Kamal Hassan, Amal Robay, Aljazi Al-Maraghi, Nuha Nimeri, Asmaa Basheer Azzam, Alya Al Shakaki, Eman Hamid, Ronald G Crystal, Khalid A Fakhro
{"title":"叙利亚血统微绒毛包涵病的新型MYO5B突变。","authors":"Kamal Hassan, Amal Robay, Aljazi Al-Maraghi, Nuha Nimeri, Asmaa Basheer Azzam, Alya Al Shakaki, Eman Hamid, Ronald G Crystal, Khalid A Fakhro","doi":"10.1101/mcs.a006103","DOIUrl":null,"url":null,"abstract":"<p><p>Microvillus inclusion disease (MVID) is a rare autosomal recessive condition characterized by a lack of microvilli on the surface of enterocytes, resulting in severe, life-threatening diarrhea that could lead to mortality within the first year of life. We identify two unrelated families, each with one child presenting with severe MVID from birth. Using trio whole-exome sequencing, we observed that the two families share a novel nonsense variant (Glu1589*) in the <i>MYO5B</i> gene, a type Vb myosin motor protein in which rare damaging mutations were previously described to cause MVID. This founder mutation was very rare in public databases and is likely specific to patients of Syrian ancestry. We present a detailed account of both patients' clinical histories to fully characterize the effect of this variant and expand the genotype-phenotype databases for MVID patients from the Middle East.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/ac/MCS006103Has.PMC8958910.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel <i>MYO5B</i> mutation in microvillous inclusion disease of Syrian ancestry.\",\"authors\":\"Kamal Hassan, Amal Robay, Aljazi Al-Maraghi, Nuha Nimeri, Asmaa Basheer Azzam, Alya Al Shakaki, Eman Hamid, Ronald G Crystal, Khalid A Fakhro\",\"doi\":\"10.1101/mcs.a006103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microvillus inclusion disease (MVID) is a rare autosomal recessive condition characterized by a lack of microvilli on the surface of enterocytes, resulting in severe, life-threatening diarrhea that could lead to mortality within the first year of life. We identify two unrelated families, each with one child presenting with severe MVID from birth. Using trio whole-exome sequencing, we observed that the two families share a novel nonsense variant (Glu1589*) in the <i>MYO5B</i> gene, a type Vb myosin motor protein in which rare damaging mutations were previously described to cause MVID. This founder mutation was very rare in public databases and is likely specific to patients of Syrian ancestry. We present a detailed account of both patients' clinical histories to fully characterize the effect of this variant and expand the genotype-phenotype databases for MVID patients from the Middle East.</p>\",\"PeriodicalId\":10360,\"journal\":{\"name\":\"Cold Spring Harbor Molecular Case Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/ac/MCS006103Has.PMC8958910.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor Molecular Case Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/mcs.a006103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor Molecular Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/mcs.a006103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Novel MYO5B mutation in microvillous inclusion disease of Syrian ancestry.
Microvillus inclusion disease (MVID) is a rare autosomal recessive condition characterized by a lack of microvilli on the surface of enterocytes, resulting in severe, life-threatening diarrhea that could lead to mortality within the first year of life. We identify two unrelated families, each with one child presenting with severe MVID from birth. Using trio whole-exome sequencing, we observed that the two families share a novel nonsense variant (Glu1589*) in the MYO5B gene, a type Vb myosin motor protein in which rare damaging mutations were previously described to cause MVID. This founder mutation was very rare in public databases and is likely specific to patients of Syrian ancestry. We present a detailed account of both patients' clinical histories to fully characterize the effect of this variant and expand the genotype-phenotype databases for MVID patients from the Middle East.
期刊介绍:
Cold Spring Harbor Molecular Case Studies is an open-access, peer-reviewed, international journal in the field of precision medicine. Articles in the journal present genomic and molecular analyses of individuals or cohorts alongside their clinical presentations and phenotypic information. The journal''s purpose is to rapidly share insights into disease development and treatment gained by application of genomics, proteomics, metabolomics, biomarker analysis, and other approaches. The journal covers the fields of cancer, complex diseases, monogenic disorders, neurological conditions, orphan diseases, infectious disease, gene therapy, and pharmacogenomics. It has a rapid peer-review process that is based on technical evaluation of the analyses performed, not the novelty of findings, and offers a swift, clear path to publication. The journal publishes: Research Reports presenting detailed case studies of individuals and small cohorts, Research Articles describing more extensive work using larger cohorts and/or functional analyses, Rapid Communications presenting the discovery of a novel variant and/or novel phenotype associated with a known disease gene, Rapid Cancer Communications presenting the discovery of a novel variant or combination of variants in a cancer type, Variant Discrepancy Resolution describing efforts to resolve differences or update variant interpretations in ClinVar through case-level data sharing, Follow-up Reports linked to previous observations, Plus Review Articles, Editorials, and Position Statements on best practices for research in precision medicine.