脑电图显示空间记忆网络中θ波段振荡的个体差异预示着快速的地点学习。

Brain and neuroscience advances Pub Date : 2021-04-27 eCollection Date: 2021-01-01 DOI:10.1177/23982128211002725
Markus Bauer, Matthew G Buckley, Tobias Bast
{"title":"脑电图显示空间记忆网络中θ波段振荡的个体差异预示着快速的地点学习。","authors":"Markus Bauer,&nbsp;Matthew G Buckley,&nbsp;Tobias Bast","doi":"10.1177/23982128211002725","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial memory has been closely related to the medial temporal lobe and theta oscillations are thought to play a key role. However, it remains difficult to investigate medial temporal lobe activation related to spatial memory with non-invasive electrophysiological methods in humans. Here, we combined the virtual delayed-matching-to-place task, reverse-translated from the watermaze delayed-matching-to-place task in rats, with high-density electroencephalography recordings. Healthy young volunteers performed this computerised task in a virtual circular arena, which contained a hidden target whose location moved to a new place every four trials, allowing the assessment of rapid memory formation. Using behavioural measures as predictor variables for source reconstructed frequency-specific electroencephalography power, we found that inter-individual differences in 'search preference' during 'probe trials', a measure of one-trial place learning known from rodent studies to be particularly hippocampus-dependent, correlated predominantly with distinct theta-band oscillations (approximately 7 Hz), particularly in the right temporal lobe, the right striatum and inferior occipital cortex or cerebellum. This pattern was found during both encoding and retrieval/expression, but not in control analyses and could not be explained by motor confounds. Alpha-activity in sensorimotor and parietal cortex contralateral to the hand used for navigation also correlated (inversely) with search preference. This latter finding likely reflects movement-related factors associated with task performance, as well as a frequency difference in (ongoing) alpha-rhythm for high-performers versus low-performers that may contribute to these results indirectly. Relating inter-individual differences in ongoing brain activity to behaviour in a continuous rapid place-learning task that is suitable for a variety of populations, we could demonstrate that memory-related theta-band activity in temporal lobe can be measured with electroencephalography recordings. This approach holds great potential for further studies investigating the interactions within this network during encoding and retrieval, as well as neuromodulatory impacts and age-related changes.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"5 ","pages":"23982128211002725"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/23982128211002725","citationCount":"2","resultStr":"{\"title\":\"Individual differences in theta-band oscillations in a spatial memory network revealed by electroencephalography predict rapid place learning.\",\"authors\":\"Markus Bauer,&nbsp;Matthew G Buckley,&nbsp;Tobias Bast\",\"doi\":\"10.1177/23982128211002725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial memory has been closely related to the medial temporal lobe and theta oscillations are thought to play a key role. However, it remains difficult to investigate medial temporal lobe activation related to spatial memory with non-invasive electrophysiological methods in humans. Here, we combined the virtual delayed-matching-to-place task, reverse-translated from the watermaze delayed-matching-to-place task in rats, with high-density electroencephalography recordings. Healthy young volunteers performed this computerised task in a virtual circular arena, which contained a hidden target whose location moved to a new place every four trials, allowing the assessment of rapid memory formation. Using behavioural measures as predictor variables for source reconstructed frequency-specific electroencephalography power, we found that inter-individual differences in 'search preference' during 'probe trials', a measure of one-trial place learning known from rodent studies to be particularly hippocampus-dependent, correlated predominantly with distinct theta-band oscillations (approximately 7 Hz), particularly in the right temporal lobe, the right striatum and inferior occipital cortex or cerebellum. This pattern was found during both encoding and retrieval/expression, but not in control analyses and could not be explained by motor confounds. Alpha-activity in sensorimotor and parietal cortex contralateral to the hand used for navigation also correlated (inversely) with search preference. This latter finding likely reflects movement-related factors associated with task performance, as well as a frequency difference in (ongoing) alpha-rhythm for high-performers versus low-performers that may contribute to these results indirectly. Relating inter-individual differences in ongoing brain activity to behaviour in a continuous rapid place-learning task that is suitable for a variety of populations, we could demonstrate that memory-related theta-band activity in temporal lobe can be measured with electroencephalography recordings. This approach holds great potential for further studies investigating the interactions within this network during encoding and retrieval, as well as neuromodulatory impacts and age-related changes.</p>\",\"PeriodicalId\":72444,\"journal\":{\"name\":\"Brain and neuroscience advances\",\"volume\":\"5 \",\"pages\":\"23982128211002725\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/23982128211002725\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and neuroscience advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23982128211002725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and neuroscience advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23982128211002725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

空间记忆与内侧颞叶密切相关,θ波振荡被认为在其中起着关键作用。然而,用非侵入性电生理方法研究与人类空间记忆相关的内侧颞叶激活仍然很困难。在这里,我们将大鼠水迷宫延迟匹配到位置任务的虚拟延迟匹配到位置任务与高密度脑电图记录相结合。健康的年轻志愿者在一个虚拟的圆形竞技场中完成了这项计算机化的任务,其中包含一个隐藏的目标,其位置每四次移动一次,从而可以评估快速记忆的形成。使用行为测量作为源重构频率特异性脑电图功率的预测变量,我们发现“探针试验”期间“搜索偏好”的个体间差异,这是一种从啮齿动物研究中已知的特别依赖于海马体的单次试验地点学习的测量,主要与不同的θ波段振荡(约7 Hz)相关,特别是在右侧颞叶。右侧纹状体和枕下皮质或小脑。这种模式在编码和检索/表达过程中都有发现,但在对照分析中没有发现,也不能用运动混淆来解释。用于导航的手的对侧感觉运动皮层和顶叶皮层的α -活性也与搜索偏好(负相关)。后一项发现可能反映了与任务表现相关的运动相关因素,以及高绩效者与低绩效者之间(持续)α节律的频率差异,这可能间接导致这些结果。将正在进行的大脑活动与适用于各种人群的连续快速地点学习任务中的行为之间的个体差异联系起来,我们可以证明,颞叶中与记忆相关的θ波段活动可以通过脑电图记录来测量。这种方法在进一步研究编码和检索过程中该网络内部的相互作用,以及神经调节影响和年龄相关变化方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Individual differences in theta-band oscillations in a spatial memory network revealed by electroencephalography predict rapid place learning.

Spatial memory has been closely related to the medial temporal lobe and theta oscillations are thought to play a key role. However, it remains difficult to investigate medial temporal lobe activation related to spatial memory with non-invasive electrophysiological methods in humans. Here, we combined the virtual delayed-matching-to-place task, reverse-translated from the watermaze delayed-matching-to-place task in rats, with high-density electroencephalography recordings. Healthy young volunteers performed this computerised task in a virtual circular arena, which contained a hidden target whose location moved to a new place every four trials, allowing the assessment of rapid memory formation. Using behavioural measures as predictor variables for source reconstructed frequency-specific electroencephalography power, we found that inter-individual differences in 'search preference' during 'probe trials', a measure of one-trial place learning known from rodent studies to be particularly hippocampus-dependent, correlated predominantly with distinct theta-band oscillations (approximately 7 Hz), particularly in the right temporal lobe, the right striatum and inferior occipital cortex or cerebellum. This pattern was found during both encoding and retrieval/expression, but not in control analyses and could not be explained by motor confounds. Alpha-activity in sensorimotor and parietal cortex contralateral to the hand used for navigation also correlated (inversely) with search preference. This latter finding likely reflects movement-related factors associated with task performance, as well as a frequency difference in (ongoing) alpha-rhythm for high-performers versus low-performers that may contribute to these results indirectly. Relating inter-individual differences in ongoing brain activity to behaviour in a continuous rapid place-learning task that is suitable for a variety of populations, we could demonstrate that memory-related theta-band activity in temporal lobe can be measured with electroencephalography recordings. This approach holds great potential for further studies investigating the interactions within this network during encoding and retrieval, as well as neuromodulatory impacts and age-related changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Review of the gastric physiology of disgust: Proto-nausea as an under-explored facet of the gut-brain axis. From neurophobia to neurophilia: Fostering confidence and passion for neurology in medical students. Are all neuroscience degrees the same? A comparison of undergraduate neuroscience degrees across the United Kingdom. Centralising a loss of consciousness to the central medial thalamus. Genetically modified animals as models of neurodevelopmental conditions: A review of systematic review reporting quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1