{"title":"具有l0损失的可扩展网络估计。","authors":"Junghi Kim, Hongtu Zhu, Xiao Wang, Kim-Anh Do","doi":"10.1002/sam.11483","DOIUrl":null,"url":null,"abstract":"<p><p>With the advent of high-throughput sequencing, an efficient computing strategy is required to deal with large genomic data sets. The challenge of estimating a large precision matrix has garnered substantial research attention for its direct application to discriminant analyses and graphical models. Most existing methods either use a lasso-type penalty that may lead to biased estimators or are computationally intensive, which prevents their applications to very large graphs. We propose using an <i>L</i> <sub>0</sub> penalty to estimate an ultra-large precision matrix (scalnetL0). We apply scalnetL0 to RNA-seq data from breast cancer patients represented in The Cancer Genome Atlas and find improved accuracy of classifications for survival times. The estimated precision matrix provides information about a large-scale co-expression network in breast cancer. Simulation studies demonstrate that scalnetL0 provides more accurate and efficient estimators, yielding shorter CPU time and less Frobenius loss on sparse learning for large-scale precision matrix estimation.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"14 1","pages":"18-30"},"PeriodicalIF":2.1000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/sam.11483","citationCount":"1","resultStr":"{\"title\":\"Scalable network estimation with <i>L</i> <sub>0</sub> penalty.\",\"authors\":\"Junghi Kim, Hongtu Zhu, Xiao Wang, Kim-Anh Do\",\"doi\":\"10.1002/sam.11483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the advent of high-throughput sequencing, an efficient computing strategy is required to deal with large genomic data sets. The challenge of estimating a large precision matrix has garnered substantial research attention for its direct application to discriminant analyses and graphical models. Most existing methods either use a lasso-type penalty that may lead to biased estimators or are computationally intensive, which prevents their applications to very large graphs. We propose using an <i>L</i> <sub>0</sub> penalty to estimate an ultra-large precision matrix (scalnetL0). We apply scalnetL0 to RNA-seq data from breast cancer patients represented in The Cancer Genome Atlas and find improved accuracy of classifications for survival times. The estimated precision matrix provides information about a large-scale co-expression network in breast cancer. Simulation studies demonstrate that scalnetL0 provides more accurate and efficient estimators, yielding shorter CPU time and less Frobenius loss on sparse learning for large-scale precision matrix estimation.</p>\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"14 1\",\"pages\":\"18-30\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/sam.11483\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11483\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11483","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
With the advent of high-throughput sequencing, an efficient computing strategy is required to deal with large genomic data sets. The challenge of estimating a large precision matrix has garnered substantial research attention for its direct application to discriminant analyses and graphical models. Most existing methods either use a lasso-type penalty that may lead to biased estimators or are computationally intensive, which prevents their applications to very large graphs. We propose using an L0 penalty to estimate an ultra-large precision matrix (scalnetL0). We apply scalnetL0 to RNA-seq data from breast cancer patients represented in The Cancer Genome Atlas and find improved accuracy of classifications for survival times. The estimated precision matrix provides information about a large-scale co-expression network in breast cancer. Simulation studies demonstrate that scalnetL0 provides more accurate and efficient estimators, yielding shorter CPU time and less Frobenius loss on sparse learning for large-scale precision matrix estimation.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.