eHooke:基于细胞周期进程的球形细菌自动图像分析工具。

Biological imaging Pub Date : 2021-09-24 eCollection Date: 2021-01-01 DOI:10.1017/S2633903X21000027
Bruno M Saraiva, Ludwig Krippahl, Sérgio R Filipe, Ricardo Henriques, Mariana G Pinho
{"title":"eHooke:基于细胞周期进程的球形细菌自动图像分析工具。","authors":"Bruno M Saraiva, Ludwig Krippahl, Sérgio R Filipe, Ricardo Henriques, Mariana G Pinho","doi":"10.1017/S2633903X21000027","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence microscopy is a critical tool for cell biology studies on bacterial cell division and morphogenesis. Because the analysis of fluorescence microscopy images evolved beyond initial qualitative studies, numerous images analysis tools were developed to extract quantitative parameters on cell morphology and organization. To understand cellular processes required for bacterial growth and division, it is particularly important to perform such analysis in the context of cell cycle progression. However, manual assignment of cell cycle stages is laborious and prone to user bias. Although cell elongation can be used as a proxy for cell cycle progression in rod-shaped or ovoid bacteria, that is not the case for cocci, such as <i>Staphylococcus aureus.</i> Here, we describe eHooke, an image analysis framework developed specifically for automated analysis of microscopy images of spherical bacterial cells. eHooke contains a trained artificial neural network to automatically classify the cell cycle phase of individual <i>S. aureus</i> cells. Users can then apply various functions to obtain biologically relevant information on morphological features of individual cells and cellular localization of proteins, in the context of the cell cycle.</p>","PeriodicalId":72371,"journal":{"name":"Biological imaging","volume":"1 ","pages":"e3"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7c/41/S2633903X21000027a.PMC8724265.pdf","citationCount":"0","resultStr":"{\"title\":\"eHooke: A tool for automated image analysis of spherical bacteria based on cell cycle progression.\",\"authors\":\"Bruno M Saraiva, Ludwig Krippahl, Sérgio R Filipe, Ricardo Henriques, Mariana G Pinho\",\"doi\":\"10.1017/S2633903X21000027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescence microscopy is a critical tool for cell biology studies on bacterial cell division and morphogenesis. Because the analysis of fluorescence microscopy images evolved beyond initial qualitative studies, numerous images analysis tools were developed to extract quantitative parameters on cell morphology and organization. To understand cellular processes required for bacterial growth and division, it is particularly important to perform such analysis in the context of cell cycle progression. However, manual assignment of cell cycle stages is laborious and prone to user bias. Although cell elongation can be used as a proxy for cell cycle progression in rod-shaped or ovoid bacteria, that is not the case for cocci, such as <i>Staphylococcus aureus.</i> Here, we describe eHooke, an image analysis framework developed specifically for automated analysis of microscopy images of spherical bacterial cells. eHooke contains a trained artificial neural network to automatically classify the cell cycle phase of individual <i>S. aureus</i> cells. Users can then apply various functions to obtain biologically relevant information on morphological features of individual cells and cellular localization of proteins, in the context of the cell cycle.</p>\",\"PeriodicalId\":72371,\"journal\":{\"name\":\"Biological imaging\",\"volume\":\"1 \",\"pages\":\"e3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7c/41/S2633903X21000027a.PMC8724265.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S2633903X21000027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2633903X21000027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

荧光显微镜是细胞生物学研究细菌细胞分裂和形态发生的重要工具。由于对荧光显微镜图像的分析已超越了最初的定性研究,因此开发了许多图像分析工具来提取细胞形态和组织的定量参数。要了解细菌生长和分裂所需的细胞过程,在细胞周期进展的背景下进行此类分析尤为重要。然而,手动分配细胞周期阶段既费力又容易造成用户偏差。虽然在杆状或卵圆形细菌中,细胞伸长可作为细胞周期进展的替代物,但在球菌(如金黄色葡萄球菌)中却并非如此。eHooke 包含一个训练有素的人工神经网络,可自动对单个金黄色葡萄球菌细胞的细胞周期阶段进行分类。然后,用户可以应用各种功能,在细胞周期的背景下获取与单个细胞形态特征和蛋白质细胞定位相关的生物信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
eHooke: A tool for automated image analysis of spherical bacteria based on cell cycle progression.

Fluorescence microscopy is a critical tool for cell biology studies on bacterial cell division and morphogenesis. Because the analysis of fluorescence microscopy images evolved beyond initial qualitative studies, numerous images analysis tools were developed to extract quantitative parameters on cell morphology and organization. To understand cellular processes required for bacterial growth and division, it is particularly important to perform such analysis in the context of cell cycle progression. However, manual assignment of cell cycle stages is laborious and prone to user bias. Although cell elongation can be used as a proxy for cell cycle progression in rod-shaped or ovoid bacteria, that is not the case for cocci, such as Staphylococcus aureus. Here, we describe eHooke, an image analysis framework developed specifically for automated analysis of microscopy images of spherical bacterial cells. eHooke contains a trained artificial neural network to automatically classify the cell cycle phase of individual S. aureus cells. Users can then apply various functions to obtain biologically relevant information on morphological features of individual cells and cellular localization of proteins, in the context of the cell cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep-learning-based image compression for microscopy images: An empirical study. The quest for early detection of retinal disease: 3D CycleGAN-based translation of optical coherence tomography into confocal microscopy. Bridging the gap: Integrating cutting-edge techniques into biological imaging with deepImageJ. Deep-blur: Blind identification and deblurring with convolutional neural networks. Exploring self-supervised learning biases for microscopy image representation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1