利用ParaView Catalyst在Nek5000上进行大规模湍流模拟的现场可视化。

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Supercomputing Pub Date : 2022-01-01 Epub Date: 2021-08-02 DOI:10.1007/s11227-021-03990-3
Marco Atzori, Wiebke Köpp, Steven W D Chien, Daniele Massaro, Fermín Mallor, Adam Peplinski, Mohamad Rezaei, Niclas Jansson, Stefano Markidis, Ricardo Vinuesa, Erwin Laure, Philipp Schlatter, Tino Weinkauf
{"title":"利用ParaView Catalyst在Nek5000上进行大规模湍流模拟的现场可视化。","authors":"Marco Atzori,&nbsp;Wiebke Köpp,&nbsp;Steven W D Chien,&nbsp;Daniele Massaro,&nbsp;Fermín Mallor,&nbsp;Adam Peplinski,&nbsp;Mohamad Rezaei,&nbsp;Niclas Jansson,&nbsp;Stefano Markidis,&nbsp;Ricardo Vinuesa,&nbsp;Erwin Laure,&nbsp;Philipp Schlatter,&nbsp;Tino Weinkauf","doi":"10.1007/s11227-021-03990-3","DOIUrl":null,"url":null,"abstract":"<p><p>In situ visualization on high-performance computing systems allows us to analyze simulation results that would otherwise be impossible, given the size of the simulation data sets and offline post-processing execution time. We develop an in situ adaptor for Paraview Catalyst and Nek5000, a massively parallel Fortran and C code for computational fluid dynamics. We perform a strong scalability test up to 2048 cores on KTH's Beskow Cray XC40 supercomputer and assess in situ visualization's impact on the Nek5000 performance. In our study case, a high-fidelity simulation of turbulent flow, we observe that in situ operations significantly limit the strong scalability of the code, reducing the relative parallel efficiency to only <math><mrow><mo>≈</mo> <mn>21</mn> <mo>%</mo></mrow> </math> on 2048 cores (the relative efficiency of Nek5000 without in situ operations is <math><mrow><mo>≈</mo> <mn>99</mn> <mo>%</mo></mrow> </math> ). Through profiling with Arm MAP, we identified a bottleneck in the image composition step (that uses the Radix-kr algorithm) where a majority of the time is spent on MPI communication. We also identified an imbalance of in situ processing time between rank 0 and all other ranks. In our case, better scaling and load-balancing in the parallel image composition would considerably improve the performance of Nek5000 with in situ capabilities. In general, the result of this study highlights the technical challenges posed by the integration of high-performance simulation codes and data-analysis libraries and their practical use in complex cases, even when efficient algorithms already exist for a certain application scenario.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"78 3","pages":"3605-3620"},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11227-021-03990-3","citationCount":"4","resultStr":"{\"title\":\"In situ visualization of large-scale turbulence simulations in Nek5000 with ParaView Catalyst.\",\"authors\":\"Marco Atzori,&nbsp;Wiebke Köpp,&nbsp;Steven W D Chien,&nbsp;Daniele Massaro,&nbsp;Fermín Mallor,&nbsp;Adam Peplinski,&nbsp;Mohamad Rezaei,&nbsp;Niclas Jansson,&nbsp;Stefano Markidis,&nbsp;Ricardo Vinuesa,&nbsp;Erwin Laure,&nbsp;Philipp Schlatter,&nbsp;Tino Weinkauf\",\"doi\":\"10.1007/s11227-021-03990-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In situ visualization on high-performance computing systems allows us to analyze simulation results that would otherwise be impossible, given the size of the simulation data sets and offline post-processing execution time. We develop an in situ adaptor for Paraview Catalyst and Nek5000, a massively parallel Fortran and C code for computational fluid dynamics. We perform a strong scalability test up to 2048 cores on KTH's Beskow Cray XC40 supercomputer and assess in situ visualization's impact on the Nek5000 performance. In our study case, a high-fidelity simulation of turbulent flow, we observe that in situ operations significantly limit the strong scalability of the code, reducing the relative parallel efficiency to only <math><mrow><mo>≈</mo> <mn>21</mn> <mo>%</mo></mrow> </math> on 2048 cores (the relative efficiency of Nek5000 without in situ operations is <math><mrow><mo>≈</mo> <mn>99</mn> <mo>%</mo></mrow> </math> ). Through profiling with Arm MAP, we identified a bottleneck in the image composition step (that uses the Radix-kr algorithm) where a majority of the time is spent on MPI communication. We also identified an imbalance of in situ processing time between rank 0 and all other ranks. In our case, better scaling and load-balancing in the parallel image composition would considerably improve the performance of Nek5000 with in situ capabilities. In general, the result of this study highlights the technical challenges posed by the integration of high-performance simulation codes and data-analysis libraries and their practical use in complex cases, even when efficient algorithms already exist for a certain application scenario.</p>\",\"PeriodicalId\":50034,\"journal\":{\"name\":\"Journal of Supercomputing\",\"volume\":\"78 3\",\"pages\":\"3605-3620\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11227-021-03990-3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-021-03990-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-021-03990-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 4

摘要

在高性能计算系统上的现场可视化使我们能够分析模拟结果,否则这是不可能的,因为模拟数据集的大小和离线后处理执行时间。我们为Paraview Catalyst和Nek5000开发了一个原位适配器,Nek5000是一个用于计算流体动力学的大规模并行Fortran和C代码。我们在KTH的Beskow Cray XC40超级计算机上进行了高达2048核的强大可扩展性测试,并评估了现场可视化对Nek5000性能的影响。在我们的研究案例中,湍流的高保真度模拟,我们观察到原位操作显著限制了代码的强大可扩展性,在2048核上将相对并行效率降低到仅≈21%(不进行原位操作的Nek5000的相对效率为≈99%)。通过使用Arm MAP进行分析,我们发现了图像合成步骤(使用Radix-kr算法)中的瓶颈,其中大部分时间都花在MPI通信上。我们还确定了0级和所有其他级别之间原地处理时间的不平衡。在我们的例子中,在并行图像合成中更好的缩放和负载平衡将大大提高具有原位功能的Nek5000的性能。总的来说,本研究的结果强调了高性能仿真代码和数据分析库的集成所带来的技术挑战,以及它们在复杂情况下的实际应用,即使在某些应用场景中已经存在有效的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In situ visualization of large-scale turbulence simulations in Nek5000 with ParaView Catalyst.

In situ visualization on high-performance computing systems allows us to analyze simulation results that would otherwise be impossible, given the size of the simulation data sets and offline post-processing execution time. We develop an in situ adaptor for Paraview Catalyst and Nek5000, a massively parallel Fortran and C code for computational fluid dynamics. We perform a strong scalability test up to 2048 cores on KTH's Beskow Cray XC40 supercomputer and assess in situ visualization's impact on the Nek5000 performance. In our study case, a high-fidelity simulation of turbulent flow, we observe that in situ operations significantly limit the strong scalability of the code, reducing the relative parallel efficiency to only 21 % on 2048 cores (the relative efficiency of Nek5000 without in situ operations is 99 % ). Through profiling with Arm MAP, we identified a bottleneck in the image composition step (that uses the Radix-kr algorithm) where a majority of the time is spent on MPI communication. We also identified an imbalance of in situ processing time between rank 0 and all other ranks. In our case, better scaling and load-balancing in the parallel image composition would considerably improve the performance of Nek5000 with in situ capabilities. In general, the result of this study highlights the technical challenges posed by the integration of high-performance simulation codes and data-analysis libraries and their practical use in complex cases, even when efficient algorithms already exist for a certain application scenario.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercomputing
Journal of Supercomputing 工程技术-工程:电子与电气
CiteScore
6.30
自引率
12.10%
发文量
734
审稿时长
13 months
期刊介绍: The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs. Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.
期刊最新文献
Topic sentiment analysis based on deep neural network using document embedding technique. A Fechner multiscale local descriptor for face recognition. Data quality model for assessing public COVID-19 big datasets. BTDA: Two-factor dynamic identity authentication scheme for data trading based on alliance chain. Driving behavior analysis and classification by vehicle OBD data using machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1