{"title":"血色素:具有复杂活性的复杂分子。","authors":"Trisha Dalapati, Julie M Moore","doi":"10.1007/s40588-021-00166-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Malaria is a disease caused by parasites that reside in host red blood cells and use hemoglobin as a nutrient source. Heme released by hemoglobin catabolism is modified by the parasite to produce hemozoin (HZ), which has toxic effects on the host. Experimentation aiming to elucidate how HZ contributes to malaria pathogenesis has utilized different preparations of this molecule, complicating interpretation and comparison of findings. We examine natural synthesis and isolation of HZ and highlight studies that have used multiple preparations, including synthetic forms, in a comparative fashion.</p><p><strong>Recent findings: </strong>Recent work utilizing sophisticated imaging and detection techniques reveals important molecular characteristics of HZ synthesis and biochemistry. Other recent studies further refine understanding of contributions of HZ to malaria pathogenesis yet highlight the continuing need to characterize HZ preparations and contextualize experimental conditions in the in vivo infection milieu.</p><p><strong>Summary: </strong>This review highlights the necessity of collectively determining what is physiologically relevant HZ. Characterization of isolated natural HZ and use of multiple preparations in each study are recommended with application of in vivo studies whenever possible. Adoption of such practices is expected to improve reproducibility of results and elucidate the myriad of ways that HZ participates in malaria pathogenesis.</p>","PeriodicalId":45506,"journal":{"name":"Current Clinical Microbiology Reports","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40588-021-00166-8","citationCount":"1","resultStr":"{\"title\":\"Hemozoin: a Complex Molecule with Complex Activities.\",\"authors\":\"Trisha Dalapati, Julie M Moore\",\"doi\":\"10.1007/s40588-021-00166-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Malaria is a disease caused by parasites that reside in host red blood cells and use hemoglobin as a nutrient source. Heme released by hemoglobin catabolism is modified by the parasite to produce hemozoin (HZ), which has toxic effects on the host. Experimentation aiming to elucidate how HZ contributes to malaria pathogenesis has utilized different preparations of this molecule, complicating interpretation and comparison of findings. We examine natural synthesis and isolation of HZ and highlight studies that have used multiple preparations, including synthetic forms, in a comparative fashion.</p><p><strong>Recent findings: </strong>Recent work utilizing sophisticated imaging and detection techniques reveals important molecular characteristics of HZ synthesis and biochemistry. Other recent studies further refine understanding of contributions of HZ to malaria pathogenesis yet highlight the continuing need to characterize HZ preparations and contextualize experimental conditions in the in vivo infection milieu.</p><p><strong>Summary: </strong>This review highlights the necessity of collectively determining what is physiologically relevant HZ. Characterization of isolated natural HZ and use of multiple preparations in each study are recommended with application of in vivo studies whenever possible. Adoption of such practices is expected to improve reproducibility of results and elucidate the myriad of ways that HZ participates in malaria pathogenesis.</p>\",\"PeriodicalId\":45506,\"journal\":{\"name\":\"Current Clinical Microbiology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40588-021-00166-8\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Clinical Microbiology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40588-021-00166-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Clinical Microbiology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40588-021-00166-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Hemozoin: a Complex Molecule with Complex Activities.
Purpose of review: Malaria is a disease caused by parasites that reside in host red blood cells and use hemoglobin as a nutrient source. Heme released by hemoglobin catabolism is modified by the parasite to produce hemozoin (HZ), which has toxic effects on the host. Experimentation aiming to elucidate how HZ contributes to malaria pathogenesis has utilized different preparations of this molecule, complicating interpretation and comparison of findings. We examine natural synthesis and isolation of HZ and highlight studies that have used multiple preparations, including synthetic forms, in a comparative fashion.
Recent findings: Recent work utilizing sophisticated imaging and detection techniques reveals important molecular characteristics of HZ synthesis and biochemistry. Other recent studies further refine understanding of contributions of HZ to malaria pathogenesis yet highlight the continuing need to characterize HZ preparations and contextualize experimental conditions in the in vivo infection milieu.
Summary: This review highlights the necessity of collectively determining what is physiologically relevant HZ. Characterization of isolated natural HZ and use of multiple preparations in each study are recommended with application of in vivo studies whenever possible. Adoption of such practices is expected to improve reproducibility of results and elucidate the myriad of ways that HZ participates in malaria pathogenesis.
期刊介绍:
Current Clinical Microbiology Reports commissions expert reviews from leading scientists at the forefront of research in microbiology. The journal covers this broad field by dividing it into four key main areas of study: virology, bacteriology, parasitology, and mycology. Within each of the four sections, experts from around the world address important aspects of clinical microbiology such as immunology, diagnostics, therapeutics, antibiotics and antibiotic resistance, and vaccines. Some of the world’s foremost authorities in the field of microbiology serve as section editors and editorial board members. Section editors select topics for which leading researchers are invited to contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, which are highlighted in annotated reference lists. These timely reviews of the literature examine the latest scientific discoveries and controversies as they emerge and are indispensable to both researchers and clinicians. The editorial board, composed of more than 20 internationally diverse members, reviews the annual table of contents, ensures that topics address all aspects of emerging research, and where applicable suggests topics of critical importance to various countries/regions.