估计单细胞基因表达测量的内在和外在噪声。

Pub Date : 2016-12-01 DOI:10.1515/sagmb-2016-0002
Audrey Qiuyan Fu, Lior Pachter
{"title":"估计单细胞基因表达测量的内在和外在噪声。","authors":"Audrey Qiuyan Fu,&nbsp;Lior Pachter","doi":"10.1515/sagmb-2016-0002","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression is stochastic and displays variation (\"noise\") both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): \"Stochastic gene expression in a single cell,\" Science, 297, 1183-1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): \"Stochastic gene expression in a single cell,\" Science, 297, 1183-1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2016-0002","citationCount":"23","resultStr":"{\"title\":\"Estimating intrinsic and extrinsic noise from single-cell gene expression measurements.\",\"authors\":\"Audrey Qiuyan Fu,&nbsp;Lior Pachter\",\"doi\":\"10.1515/sagmb-2016-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene expression is stochastic and displays variation (\\\"noise\\\") both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): \\\"Stochastic gene expression in a single cell,\\\" Science, 297, 1183-1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): \\\"Stochastic gene expression in a single cell,\\\" Science, 297, 1183-1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2016-0002\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2016-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2016-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

基因表达是随机的,在细胞内和细胞间都表现出变异(“噪音”)。细胞内(内在)变异可以与细胞外(外在)变异区分开来,方法是将总变异定律应用于双报告基因试验的数据,该试验探测单细胞中相同调控基因对的表达。我们检验已建立的公式[Elowitz, M. B., a . J. Levine, E. D. Siggia和P. S. Swain(2002):“单个细胞中的随机基因表达”,《科学》,297,1183-1186。]用于估计内在和外在噪声,并根据层次模型提供对它们的解释。这使我们能够推导出最小化偏差或均方误差的替代估计器。我们提供了这些结果的几何解释,澄清了[Elowitz, M. B., a . J. Levine, E. D. Siggia和P. S. Swain(2002):“单个细胞中的随机基因表达”,《科学》,297,1183-1186.]中的解释。我们还通过模拟和对已发表数据的重新分析证明,为了产生合理的结果,估计器必须满足层次模型背后的分布假设,这突出了归一化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Estimating intrinsic and extrinsic noise from single-cell gene expression measurements.

Gene expression is stochastic and displays variation ("noise") both within and between cells. Intracellular (intrinsic) variance can be distinguished from extracellular (extrinsic) variance by applying the law of total variance to data from two-reporter assays that probe expression of identically regulated gene pairs in single cells. We examine established formulas [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): "Stochastic gene expression in a single cell," Science, 297, 1183-1186.] for the estimation of intrinsic and extrinsic noise and provide interpretations of them in terms of a hierarchical model. This allows us to derive alternative estimators that minimize bias or mean squared error. We provide a geometric interpretation of these results that clarifies the interpretation in [Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain (2002): "Stochastic gene expression in a single cell," Science, 297, 1183-1186.]. We also demonstrate through simulation and re-analysis of published data that the distribution assumptions underlying the hierarchical model have to be satisfied for the estimators to produce sensible results, which highlights the importance of normalization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1