[半乳糖苷受体GalR2和肌肽的药理激动剂在体外和体内模型系统中的抗缺血和抗氧化活性]。

Q3 Biochemistry, Genetics and Molecular Biology Biomeditsinskaya khimiya Pub Date : 2022-06-01 DOI:10.18097/PBMC20226803190
L I Serebryakova, I M Studneva, O M Veselova, I V Dobrokhotov, G G Konovalova, A A Timoshin, A A Abramov, D V Avdeev, M V Sidorova, V Z Lankin, O I Pisarenko
{"title":"[半乳糖苷受体GalR2和肌肽的药理激动剂在体外和体内模型系统中的抗缺血和抗氧化活性]。","authors":"L I Serebryakova,&nbsp;I M Studneva,&nbsp;O M Veselova,&nbsp;I V Dobrokhotov,&nbsp;G G Konovalova,&nbsp;A A Timoshin,&nbsp;A A Abramov,&nbsp;D V Avdeev,&nbsp;M V Sidorova,&nbsp;V Z Lankin,&nbsp;O I Pisarenko","doi":"10.18097/PBMC20226803190","DOIUrl":null,"url":null,"abstract":"<p><p>Antioxidant and anti-ischemic properties of the pharmacological agonist of galanin receptor GalR2 WTLNSAGYLLGPβAH (Gal) and its C-terminal fragment, dipeptide carnosine (βAH), were studied in the model of regional ischemia and reperfusion of the rat heart in vivo in the dose range of 0.5-5.0 mg/kg and Cu²⁺-induced free radical oxidation of low density lipoproteins (LDL) of human plasma in vitro for peptide concentrations of 0.01 mM and 0.1 mM. Gal was obtained by automatic solid phase synthesis using the Fmoc methodology; its structure was characterized by 1H-NMR spectroscopy and MALDI-TOF mass spectrometry. Intravenous administration of the optimal dose of Gal (1 mg/kg) to rats after ischemia was more effective than carnosine in reducing of the myocardial infarct size and the activity of creatine kinase-MB and lactate dehydrogenase in blood plasma at the end of reperfusion. It also improved the metabolic state of the reperfused myocardium and reduced the formation of peroxidation products during reperfusion. Gal reduced more effectively the formation of adducts of hydroxyl radicals in the interstitium of the area at risk (AAR) of the rat heart than carnosine. Carnosine at a dose of 1 mg/kg more effectively increased the activity of catalase and glutathione peroxidase in the AAR by the end of reperfusion compared to Gal. In a model of Cu²⁺-initiated oxidation of human plasma LDL 0.1 mM carnosine demonstrated a significantly more pronounced reduction in the formation of lipid radicals compared to Gal. The results show that Gal can be considered as a promising agent that reduces myocardial injury during reperfusion and oxidative stress.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The anti-ischemic and antioxidant activity of the pharmacological agonist of galanin receptor GalR2 and carnosine in in vitro and in vivo model systems].\",\"authors\":\"L I Serebryakova,&nbsp;I M Studneva,&nbsp;O M Veselova,&nbsp;I V Dobrokhotov,&nbsp;G G Konovalova,&nbsp;A A Timoshin,&nbsp;A A Abramov,&nbsp;D V Avdeev,&nbsp;M V Sidorova,&nbsp;V Z Lankin,&nbsp;O I Pisarenko\",\"doi\":\"10.18097/PBMC20226803190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antioxidant and anti-ischemic properties of the pharmacological agonist of galanin receptor GalR2 WTLNSAGYLLGPβAH (Gal) and its C-terminal fragment, dipeptide carnosine (βAH), were studied in the model of regional ischemia and reperfusion of the rat heart in vivo in the dose range of 0.5-5.0 mg/kg and Cu²⁺-induced free radical oxidation of low density lipoproteins (LDL) of human plasma in vitro for peptide concentrations of 0.01 mM and 0.1 mM. Gal was obtained by automatic solid phase synthesis using the Fmoc methodology; its structure was characterized by 1H-NMR spectroscopy and MALDI-TOF mass spectrometry. Intravenous administration of the optimal dose of Gal (1 mg/kg) to rats after ischemia was more effective than carnosine in reducing of the myocardial infarct size and the activity of creatine kinase-MB and lactate dehydrogenase in blood plasma at the end of reperfusion. It also improved the metabolic state of the reperfused myocardium and reduced the formation of peroxidation products during reperfusion. Gal reduced more effectively the formation of adducts of hydroxyl radicals in the interstitium of the area at risk (AAR) of the rat heart than carnosine. Carnosine at a dose of 1 mg/kg more effectively increased the activity of catalase and glutathione peroxidase in the AAR by the end of reperfusion compared to Gal. In a model of Cu²⁺-initiated oxidation of human plasma LDL 0.1 mM carnosine demonstrated a significantly more pronounced reduction in the formation of lipid radicals compared to Gal. The results show that Gal can be considered as a promising agent that reduces myocardial injury during reperfusion and oxidative stress.</p>\",\"PeriodicalId\":8889,\"journal\":{\"name\":\"Biomeditsinskaya khimiya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomeditsinskaya khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/PBMC20226803190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20226803190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

甘丙肽受体GalR2药理激动剂WTLNSAGYLLGPβAH (Gal)及其c端片段二肽肌肽(βAH)的抗氧化和抗缺血特性以0.5 ~ 5.0 mg/kg剂量范围内的大鼠心脏局部缺血再灌注模型为研究对象,在0.01 mM和0.1 mM的肽浓度下,Cu 2 +诱导体外人血浆低密度脂蛋白(LDL)自由基氧化,Gal采用Fmoc法自动固相合成;通过1H-NMR和MALDI-TOF质谱对其结构进行了表征。大鼠缺血后静脉给予最佳剂量Gal (1 mg/kg)比肌肽更能有效降低心肌梗死面积和再灌注结束时血浆肌酸激酶- mb和乳酸脱氢酶活性。改善再灌注心肌的代谢状态,减少再灌注时过氧化产物的形成。Gal比肌肽更有效地减少了大鼠心脏危险区域(AAR)间质羟基自由基加合物的形成。在再灌注结束时,与Gal相比,1 mg/kg剂量的肌肽更有效地增加了AAR中过氧化氢酶和谷胱甘肽过氧化物酶的活性。在cu2 +引发的人体血浆LDL 0.1 mM氧化模型中,肌肽比Gal更明显地减少了脂质自由基的形成。结果表明,Gal可以被认为是一种有希望减少再灌注和氧化应激时心肌损伤的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[The anti-ischemic and antioxidant activity of the pharmacological agonist of galanin receptor GalR2 and carnosine in in vitro and in vivo model systems].

Antioxidant and anti-ischemic properties of the pharmacological agonist of galanin receptor GalR2 WTLNSAGYLLGPβAH (Gal) and its C-terminal fragment, dipeptide carnosine (βAH), were studied in the model of regional ischemia and reperfusion of the rat heart in vivo in the dose range of 0.5-5.0 mg/kg and Cu²⁺-induced free radical oxidation of low density lipoproteins (LDL) of human plasma in vitro for peptide concentrations of 0.01 mM and 0.1 mM. Gal was obtained by automatic solid phase synthesis using the Fmoc methodology; its structure was characterized by 1H-NMR spectroscopy and MALDI-TOF mass spectrometry. Intravenous administration of the optimal dose of Gal (1 mg/kg) to rats after ischemia was more effective than carnosine in reducing of the myocardial infarct size and the activity of creatine kinase-MB and lactate dehydrogenase in blood plasma at the end of reperfusion. It also improved the metabolic state of the reperfused myocardium and reduced the formation of peroxidation products during reperfusion. Gal reduced more effectively the formation of adducts of hydroxyl radicals in the interstitium of the area at risk (AAR) of the rat heart than carnosine. Carnosine at a dose of 1 mg/kg more effectively increased the activity of catalase and glutathione peroxidase in the AAR by the end of reperfusion compared to Gal. In a model of Cu²⁺-initiated oxidation of human plasma LDL 0.1 mM carnosine demonstrated a significantly more pronounced reduction in the formation of lipid radicals compared to Gal. The results show that Gal can be considered as a promising agent that reduces myocardial injury during reperfusion and oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomeditsinskaya khimiya
Biomeditsinskaya khimiya Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍: The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).
期刊最新文献
Apoptotic endonuclease EndoG induces alternative splicing of Caspase-2. Bioinformatic identification of proteins with altered PTM levels in a mouse line established to study the mechanisms of the development of fibromuscular dysplasia. Internalization of extracellular vesicles of cancer patients by peripheral blood mononuclear cells during polychemotherapy: connection with neurotoxicity. MicroRNAs as promising diagnostic and prognostic markers for the human genitourinary cancer. Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1