Chunxing Wang , Xiaodong Jiang , Zixuan Wang , Xiaorui Guo , Wenbo Wan , Jian Wang
{"title":"AMB-Wnet:在多桥Wnet中嵌入注意力模型,用于探索疾病的机制","authors":"Chunxing Wang , Xiaodong Jiang , Zixuan Wang , Xiaorui Guo , Wenbo Wan , Jian Wang","doi":"10.1016/j.gep.2022.119259","DOIUrl":null,"url":null,"abstract":"<div><p><span>In recent years, progressive application of convolutional neural networks in image processing has successfully filtered into medical diagnosis. As a prerequisite for images detection and classification, object segmentation in medical images has attracted a great deal of attention. This study is based on the fact that most of the analysis of pathological diagnoses requires nuclei detection as the starting phase for obtaining an insight into the underlying </span>biological process and further diagnosis. In this paper, we introduce an embedded attention model in multi-bridge Wnet (AMB-Wnet) to achieve suppression of irrelevant background areas and obtain good features for learning image semantics and modality to automatically segment nuclei, inspired by the 2018 Data Science Bowl. The proposed architecture, consisting of the redesigned down sample group, up-sample group, and middle block (a new multiple-scale convolutional layers block), is designed to extract different level features. In addition, a connection group is proposed instead of skip-connection to transfer semantic information among different levels. In addition, the attention model is well embedded in the connection group, and the performance of the model is improved without increasing the amount of calculation. To validate the model's performance, we evaluated it using the BBBC038V1 data sets for nuclei segmentation. Our proposed model achieves 85.83% F1-score, 97.81% accuracy, 86.12% recall, and 83.52% intersection over union. The proposed AMB-Wnet exhibits superior results compared to the original U-Net, MultiResUNet, and recent Attention U-Net architecture.</p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":"45 ","pages":"Article 119259"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMB-Wnet: Embedding attention model in multi-bridge Wnet for exploring the mechanics of disease\",\"authors\":\"Chunxing Wang , Xiaodong Jiang , Zixuan Wang , Xiaorui Guo , Wenbo Wan , Jian Wang\",\"doi\":\"10.1016/j.gep.2022.119259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In recent years, progressive application of convolutional neural networks in image processing has successfully filtered into medical diagnosis. As a prerequisite for images detection and classification, object segmentation in medical images has attracted a great deal of attention. This study is based on the fact that most of the analysis of pathological diagnoses requires nuclei detection as the starting phase for obtaining an insight into the underlying </span>biological process and further diagnosis. In this paper, we introduce an embedded attention model in multi-bridge Wnet (AMB-Wnet) to achieve suppression of irrelevant background areas and obtain good features for learning image semantics and modality to automatically segment nuclei, inspired by the 2018 Data Science Bowl. The proposed architecture, consisting of the redesigned down sample group, up-sample group, and middle block (a new multiple-scale convolutional layers block), is designed to extract different level features. In addition, a connection group is proposed instead of skip-connection to transfer semantic information among different levels. In addition, the attention model is well embedded in the connection group, and the performance of the model is improved without increasing the amount of calculation. To validate the model's performance, we evaluated it using the BBBC038V1 data sets for nuclei segmentation. Our proposed model achieves 85.83% F1-score, 97.81% accuracy, 86.12% recall, and 83.52% intersection over union. The proposed AMB-Wnet exhibits superior results compared to the original U-Net, MultiResUNet, and recent Attention U-Net architecture.</p></div>\",\"PeriodicalId\":55598,\"journal\":{\"name\":\"Gene Expression Patterns\",\"volume\":\"45 \",\"pages\":\"Article 119259\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Expression Patterns\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567133X22000291\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X22000291","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
AMB-Wnet: Embedding attention model in multi-bridge Wnet for exploring the mechanics of disease
In recent years, progressive application of convolutional neural networks in image processing has successfully filtered into medical diagnosis. As a prerequisite for images detection and classification, object segmentation in medical images has attracted a great deal of attention. This study is based on the fact that most of the analysis of pathological diagnoses requires nuclei detection as the starting phase for obtaining an insight into the underlying biological process and further diagnosis. In this paper, we introduce an embedded attention model in multi-bridge Wnet (AMB-Wnet) to achieve suppression of irrelevant background areas and obtain good features for learning image semantics and modality to automatically segment nuclei, inspired by the 2018 Data Science Bowl. The proposed architecture, consisting of the redesigned down sample group, up-sample group, and middle block (a new multiple-scale convolutional layers block), is designed to extract different level features. In addition, a connection group is proposed instead of skip-connection to transfer semantic information among different levels. In addition, the attention model is well embedded in the connection group, and the performance of the model is improved without increasing the amount of calculation. To validate the model's performance, we evaluated it using the BBBC038V1 data sets for nuclei segmentation. Our proposed model achieves 85.83% F1-score, 97.81% accuracy, 86.12% recall, and 83.52% intersection over union. The proposed AMB-Wnet exhibits superior results compared to the original U-Net, MultiResUNet, and recent Attention U-Net architecture.
期刊介绍:
Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include:
-In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression
-Temporal studies of large gene sets during development
-Transgenic studies to study cell lineage in tissue formation