AMB-Wnet:在多桥Wnet中嵌入注意力模型,用于探索疾病的机制

IF 1 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Gene Expression Patterns Pub Date : 2022-09-01 DOI:10.1016/j.gep.2022.119259
Chunxing Wang , Xiaodong Jiang , Zixuan Wang , Xiaorui Guo , Wenbo Wan , Jian Wang
{"title":"AMB-Wnet:在多桥Wnet中嵌入注意力模型,用于探索疾病的机制","authors":"Chunxing Wang ,&nbsp;Xiaodong Jiang ,&nbsp;Zixuan Wang ,&nbsp;Xiaorui Guo ,&nbsp;Wenbo Wan ,&nbsp;Jian Wang","doi":"10.1016/j.gep.2022.119259","DOIUrl":null,"url":null,"abstract":"<div><p><span>In recent years, progressive application of convolutional neural networks in image processing has successfully filtered into medical diagnosis. As a prerequisite for images detection and classification, object segmentation in medical images has attracted a great deal of attention. This study is based on the fact that most of the analysis of pathological diagnoses requires nuclei detection as the starting phase for obtaining an insight into the underlying </span>biological process and further diagnosis. In this paper, we introduce an embedded attention model in multi-bridge Wnet (AMB-Wnet) to achieve suppression of irrelevant background areas and obtain good features for learning image semantics and modality to automatically segment nuclei, inspired by the 2018 Data Science Bowl. The proposed architecture, consisting of the redesigned down sample group, up-sample group, and middle block (a new multiple-scale convolutional layers block), is designed to extract different level features. In addition, a connection group is proposed instead of skip-connection to transfer semantic information among different levels. In addition, the attention model is well embedded in the connection group, and the performance of the model is improved without increasing the amount of calculation. To validate the model's performance, we evaluated it using the BBBC038V1 data sets for nuclei segmentation. Our proposed model achieves 85.83% F1-score, 97.81% accuracy, 86.12% recall, and 83.52% intersection over union. The proposed AMB-Wnet exhibits superior results compared to the original U-Net, MultiResUNet, and recent Attention U-Net architecture.</p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMB-Wnet: Embedding attention model in multi-bridge Wnet for exploring the mechanics of disease\",\"authors\":\"Chunxing Wang ,&nbsp;Xiaodong Jiang ,&nbsp;Zixuan Wang ,&nbsp;Xiaorui Guo ,&nbsp;Wenbo Wan ,&nbsp;Jian Wang\",\"doi\":\"10.1016/j.gep.2022.119259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In recent years, progressive application of convolutional neural networks in image processing has successfully filtered into medical diagnosis. As a prerequisite for images detection and classification, object segmentation in medical images has attracted a great deal of attention. This study is based on the fact that most of the analysis of pathological diagnoses requires nuclei detection as the starting phase for obtaining an insight into the underlying </span>biological process and further diagnosis. In this paper, we introduce an embedded attention model in multi-bridge Wnet (AMB-Wnet) to achieve suppression of irrelevant background areas and obtain good features for learning image semantics and modality to automatically segment nuclei, inspired by the 2018 Data Science Bowl. The proposed architecture, consisting of the redesigned down sample group, up-sample group, and middle block (a new multiple-scale convolutional layers block), is designed to extract different level features. In addition, a connection group is proposed instead of skip-connection to transfer semantic information among different levels. In addition, the attention model is well embedded in the connection group, and the performance of the model is improved without increasing the amount of calculation. To validate the model's performance, we evaluated it using the BBBC038V1 data sets for nuclei segmentation. Our proposed model achieves 85.83% F1-score, 97.81% accuracy, 86.12% recall, and 83.52% intersection over union. The proposed AMB-Wnet exhibits superior results compared to the original U-Net, MultiResUNet, and recent Attention U-Net architecture.</p></div>\",\"PeriodicalId\":55598,\"journal\":{\"name\":\"Gene Expression Patterns\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Expression Patterns\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567133X22000291\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X22000291","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,卷积神经网络在图像处理中的逐步应用已经成功地渗透到医学诊断中。医学图像中的目标分割作为图像检测和分类的前提,受到了广泛的关注。这项研究是基于这样一个事实,即大多数病理诊断分析需要细胞核检测作为开始阶段,以获得对潜在生物学过程的洞察和进一步的诊断。在本文中,我们在多桥Wnet (AMB-Wnet)中引入了一种嵌入式注意力模型,以实现对无关背景区域的抑制,并获得良好的特征,用于学习图像语义和模态以自动分割核,灵感来自2018年数据科学碗。提出的结构由重新设计的下样本组、上样本组和中间块(一种新的多尺度卷积层块)组成,旨在提取不同层次的特征。此外,提出了用连接组代替跳过连接来实现语义信息在不同层次间的传递。此外,注意模型很好地嵌入到连接组中,在不增加计算量的情况下提高了模型的性能。为了验证该模型的性能,我们使用BBBC038V1数据集对其进行核分割。我们提出的模型达到了85.83%的f1得分,97.81%的准确率,86.12%的召回率和83.52%的交集超过联合。与原始的U-Net、MultiResUNet和最近的Attention U-Net体系结构相比,提出的AMB-Wnet具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AMB-Wnet: Embedding attention model in multi-bridge Wnet for exploring the mechanics of disease

In recent years, progressive application of convolutional neural networks in image processing has successfully filtered into medical diagnosis. As a prerequisite for images detection and classification, object segmentation in medical images has attracted a great deal of attention. This study is based on the fact that most of the analysis of pathological diagnoses requires nuclei detection as the starting phase for obtaining an insight into the underlying biological process and further diagnosis. In this paper, we introduce an embedded attention model in multi-bridge Wnet (AMB-Wnet) to achieve suppression of irrelevant background areas and obtain good features for learning image semantics and modality to automatically segment nuclei, inspired by the 2018 Data Science Bowl. The proposed architecture, consisting of the redesigned down sample group, up-sample group, and middle block (a new multiple-scale convolutional layers block), is designed to extract different level features. In addition, a connection group is proposed instead of skip-connection to transfer semantic information among different levels. In addition, the attention model is well embedded in the connection group, and the performance of the model is improved without increasing the amount of calculation. To validate the model's performance, we evaluated it using the BBBC038V1 data sets for nuclei segmentation. Our proposed model achieves 85.83% F1-score, 97.81% accuracy, 86.12% recall, and 83.52% intersection over union. The proposed AMB-Wnet exhibits superior results compared to the original U-Net, MultiResUNet, and recent Attention U-Net architecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gene Expression Patterns
Gene Expression Patterns 生物-发育生物学
CiteScore
2.30
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include: -In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression -Temporal studies of large gene sets during development -Transgenic studies to study cell lineage in tissue formation
期刊最新文献
Outside Front Cover Editorial Board A great diversity of ROBO4 expression and regulations identified by data mining and transgene mice The expression pattern of Wnt6, Wnt10A, and HOXA13 during regenerating tails of Gekko Japonicus Outside Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1