{"title":"基于图卷积神经网络的空间增强模式癫痫脑电识别。","authors":"Jian Lian, Fangzhou Xu","doi":"10.1142/S0129065722500332","DOIUrl":null,"url":null,"abstract":"<p><p>Feature extraction is an essential procedure in the detection and recognition of epilepsy, especially for clinical applications. As a type of multichannel signal, the association between all of the channels in EEG samples can be further utilized. To implement the classification of epileptic seizures from the nonseizures in EEG samples, one graph convolutional neural network (GCNN)-based framework is proposed for capturing the spatial enhanced pattern of multichannel signals to characterize the behavior of EEG activity, which is capable of visualizing the salient regions in each sequence of EEG samples. Meanwhile, the presented GCNN could be exploited to discriminate normal, ictal and interictal EEGs as a novel classifier. To evaluate the proposed approach, comparison experiments were conducted between state-of-the-art techniques and ours. From the experimental results, we found that for ictal and interictal EEG signal discrimination, the presented approach can achieve a sensitivity of 98.33%, specificity of 99.19% and accuracy of 98.38%.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 9","pages":"2250033"},"PeriodicalIF":6.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spatial Enhanced Pattern Through Graph Convolutional Neural Network for Epileptic EEG Identification.\",\"authors\":\"Jian Lian, Fangzhou Xu\",\"doi\":\"10.1142/S0129065722500332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Feature extraction is an essential procedure in the detection and recognition of epilepsy, especially for clinical applications. As a type of multichannel signal, the association between all of the channels in EEG samples can be further utilized. To implement the classification of epileptic seizures from the nonseizures in EEG samples, one graph convolutional neural network (GCNN)-based framework is proposed for capturing the spatial enhanced pattern of multichannel signals to characterize the behavior of EEG activity, which is capable of visualizing the salient regions in each sequence of EEG samples. Meanwhile, the presented GCNN could be exploited to discriminate normal, ictal and interictal EEGs as a novel classifier. To evaluate the proposed approach, comparison experiments were conducted between state-of-the-art techniques and ours. From the experimental results, we found that for ictal and interictal EEG signal discrimination, the presented approach can achieve a sensitivity of 98.33%, specificity of 99.19% and accuracy of 98.38%.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"32 9\",\"pages\":\"2250033\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500332\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500332","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Spatial Enhanced Pattern Through Graph Convolutional Neural Network for Epileptic EEG Identification.
Feature extraction is an essential procedure in the detection and recognition of epilepsy, especially for clinical applications. As a type of multichannel signal, the association between all of the channels in EEG samples can be further utilized. To implement the classification of epileptic seizures from the nonseizures in EEG samples, one graph convolutional neural network (GCNN)-based framework is proposed for capturing the spatial enhanced pattern of multichannel signals to characterize the behavior of EEG activity, which is capable of visualizing the salient regions in each sequence of EEG samples. Meanwhile, the presented GCNN could be exploited to discriminate normal, ictal and interictal EEGs as a novel classifier. To evaluate the proposed approach, comparison experiments were conducted between state-of-the-art techniques and ours. From the experimental results, we found that for ictal and interictal EEG signal discrimination, the presented approach can achieve a sensitivity of 98.33%, specificity of 99.19% and accuracy of 98.38%.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.