基于图卷积神经网络的空间增强模式癫痫脑电识别。

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Neural Systems Pub Date : 2022-09-01 Epub Date: 2022-06-17 DOI:10.1142/S0129065722500332
Jian Lian, Fangzhou Xu
{"title":"基于图卷积神经网络的空间增强模式癫痫脑电识别。","authors":"Jian Lian,&nbsp;Fangzhou Xu","doi":"10.1142/S0129065722500332","DOIUrl":null,"url":null,"abstract":"<p><p>Feature extraction is an essential procedure in the detection and recognition of epilepsy, especially for clinical applications. As a type of multichannel signal, the association between all of the channels in EEG samples can be further utilized. To implement the classification of epileptic seizures from the nonseizures in EEG samples, one graph convolutional neural network (GCNN)-based framework is proposed for capturing the spatial enhanced pattern of multichannel signals to characterize the behavior of EEG activity, which is capable of visualizing the salient regions in each sequence of EEG samples. Meanwhile, the presented GCNN could be exploited to discriminate normal, ictal and interictal EEGs as a novel classifier. To evaluate the proposed approach, comparison experiments were conducted between state-of-the-art techniques and ours. From the experimental results, we found that for ictal and interictal EEG signal discrimination, the presented approach can achieve a sensitivity of 98.33%, specificity of 99.19% and accuracy of 98.38%.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 9","pages":"2250033"},"PeriodicalIF":6.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spatial Enhanced Pattern Through Graph Convolutional Neural Network for Epileptic EEG Identification.\",\"authors\":\"Jian Lian,&nbsp;Fangzhou Xu\",\"doi\":\"10.1142/S0129065722500332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Feature extraction is an essential procedure in the detection and recognition of epilepsy, especially for clinical applications. As a type of multichannel signal, the association between all of the channels in EEG samples can be further utilized. To implement the classification of epileptic seizures from the nonseizures in EEG samples, one graph convolutional neural network (GCNN)-based framework is proposed for capturing the spatial enhanced pattern of multichannel signals to characterize the behavior of EEG activity, which is capable of visualizing the salient regions in each sequence of EEG samples. Meanwhile, the presented GCNN could be exploited to discriminate normal, ictal and interictal EEGs as a novel classifier. To evaluate the proposed approach, comparison experiments were conducted between state-of-the-art techniques and ours. From the experimental results, we found that for ictal and interictal EEG signal discrimination, the presented approach can achieve a sensitivity of 98.33%, specificity of 99.19% and accuracy of 98.38%.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"32 9\",\"pages\":\"2250033\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500332\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500332","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

特征提取是癫痫检测和识别的重要环节,具有重要的临床应用价值。脑电信号作为一种多通道信号,可以进一步利用脑电信号样本中各通道之间的关联性。为了实现脑电样本中癫痫发作与非癫痫发作的分类,提出了一种基于图卷积神经网络(GCNN)的框架,通过捕获多通道信号的空间增强模式来表征脑电活动的行为,该框架能够可视化每个脑电样本序列中的显著区域。同时,本文提出的GCNN可以作为一种新的分类器用于区分正常、临界和间歇脑电图。为了评估所提出的方法,在最先进的技术和我们的技术之间进行了比较实验。实验结果表明,该方法对初、间期脑电信号的识别灵敏度为98.33%,特异度为99.19%,准确率为98.38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Enhanced Pattern Through Graph Convolutional Neural Network for Epileptic EEG Identification.

Feature extraction is an essential procedure in the detection and recognition of epilepsy, especially for clinical applications. As a type of multichannel signal, the association between all of the channels in EEG samples can be further utilized. To implement the classification of epileptic seizures from the nonseizures in EEG samples, one graph convolutional neural network (GCNN)-based framework is proposed for capturing the spatial enhanced pattern of multichannel signals to characterize the behavior of EEG activity, which is capable of visualizing the salient regions in each sequence of EEG samples. Meanwhile, the presented GCNN could be exploited to discriminate normal, ictal and interictal EEGs as a novel classifier. To evaluate the proposed approach, comparison experiments were conducted between state-of-the-art techniques and ours. From the experimental results, we found that for ictal and interictal EEG signal discrimination, the presented approach can achieve a sensitivity of 98.33%, specificity of 99.19% and accuracy of 98.38%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
期刊最新文献
Epileptic Seizure Detection with an End-to-end Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model A graph-based neural approach to linear sum assignment problems Automated Quality Evaluation of Large-Scale Benchmark Datasets for Vision-Language Tasks sEMG-based Inter-Session Hand Gesture Recognition via Domain Adaptation with Locality Preserving and Maximum Margin Cultural Differences in the Assessment of Synthetic Voices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1