环形喷射泵湍流结构与特性的大涡模拟

IF 3.4 3区 工程技术 Q1 MECHANICS 水动力学研究与进展:英文版 Pub Date : 2017-08-01 DOI:10.1016/S1001-6058(16)60782-5
Mao-sen Xu (徐茂森) , Xue-long Yang (杨雪龙) , Xin-ping Long (龙新平) , Qiao Lü (吕桥)
{"title":"环形喷射泵湍流结构与特性的大涡模拟","authors":"Mao-sen Xu (徐茂森) ,&nbsp;Xue-long Yang (杨雪龙) ,&nbsp;Xin-ping Long (龙新平) ,&nbsp;Qiao Lü (吕桥)","doi":"10.1016/S1001-6058(16)60782-5","DOIUrl":null,"url":null,"abstract":"<div><p>The large eddy simulation(LES) of the flow characteristics in an annular jet pump (AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The jet expansion, the velocity distribution and the energy are considered to analyze the time-averaged evolution of the flow field in the AJP. The transient flow characteristics can also be acquired from the analysis of the turbulence intensity and the Reynolds stress. The simulation demonstrates that in the time-averaged characteristics, the potential cores increase linearly with the increase of the flow ratio. With the flow development, the jet half-width gradually increases and the residual energy coefficient decreases. Compared with the distribution of the time-averaged axial velocity, that of the instantaneous velocity is more complex and disorderly. The high intensity of the axial turbulence mainly occurs in the mixing layer and the near-wall regions of the diffuser. The annular distribution of the Reynolds stress is mainly in the mixing layer and the recirculation region. There is a low-stress zone between the mixing layer and the high-stress region in the wall-boundary layer. The intensity of the spanwise vortexes is larger than that of the streamwise vortexes, and therefore, the former make greater contribution to the total vorticity. This research provides a better understanding of the flow characteristics in the AJP.</p></div>","PeriodicalId":66131,"journal":{"name":"水动力学研究与进展:英文版","volume":"29 4","pages":"Pages 702-715"},"PeriodicalIF":3.4000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60782-5","citationCount":"7","resultStr":"{\"title\":\"Large eddy simulation of turbulent flow structure and characteristics in an annular jet pump\",\"authors\":\"Mao-sen Xu (徐茂森) ,&nbsp;Xue-long Yang (杨雪龙) ,&nbsp;Xin-ping Long (龙新平) ,&nbsp;Qiao Lü (吕桥)\",\"doi\":\"10.1016/S1001-6058(16)60782-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The large eddy simulation(LES) of the flow characteristics in an annular jet pump (AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The jet expansion, the velocity distribution and the energy are considered to analyze the time-averaged evolution of the flow field in the AJP. The transient flow characteristics can also be acquired from the analysis of the turbulence intensity and the Reynolds stress. The simulation demonstrates that in the time-averaged characteristics, the potential cores increase linearly with the increase of the flow ratio. With the flow development, the jet half-width gradually increases and the residual energy coefficient decreases. Compared with the distribution of the time-averaged axial velocity, that of the instantaneous velocity is more complex and disorderly. The high intensity of the axial turbulence mainly occurs in the mixing layer and the near-wall regions of the diffuser. The annular distribution of the Reynolds stress is mainly in the mixing layer and the recirculation region. There is a low-stress zone between the mixing layer and the high-stress region in the wall-boundary layer. The intensity of the spanwise vortexes is larger than that of the streamwise vortexes, and therefore, the former make greater contribution to the total vorticity. This research provides a better understanding of the flow characteristics in the AJP.</p></div>\",\"PeriodicalId\":66131,\"journal\":{\"name\":\"水动力学研究与进展:英文版\",\"volume\":\"29 4\",\"pages\":\"Pages 702-715\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60782-5\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"水动力学研究与进展:英文版\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001605816607825\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"水动力学研究与进展:英文版","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001605816607825","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 7

摘要

对环形喷射泵(AJP)内部的流动特性进行了大涡模拟,从时间平均和瞬时两个方面系统地分析了其流动特性。考虑射流扩张、速度分布和能量,分析了AJP内流场的时均演化。通过对湍流强度和雷诺应力的分析,也可以得到瞬态流动特性。模拟结果表明,在时间平均特性中,随着流量比的增加,潜在岩心呈线性增加。随着流动的发展,射流半宽逐渐增大,剩余能系数逐渐减小。与时间平均轴向速度的分布相比,瞬时速度的分布更为复杂和无序。轴向湍流的高强度主要发生在扩散器的混合层和近壁面区域。雷诺应力的环状分布主要集中在混合层和再循环区。在混合层和壁面边界层的高应力区之间存在一个低应力区。展向涡强度大于流向涡,因此展向涡对总涡量的贡献更大。该研究有助于更好地理解AJP中的流动特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large eddy simulation of turbulent flow structure and characteristics in an annular jet pump

The large eddy simulation(LES) of the flow characteristics in an annular jet pump (AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The jet expansion, the velocity distribution and the energy are considered to analyze the time-averaged evolution of the flow field in the AJP. The transient flow characteristics can also be acquired from the analysis of the turbulence intensity and the Reynolds stress. The simulation demonstrates that in the time-averaged characteristics, the potential cores increase linearly with the increase of the flow ratio. With the flow development, the jet half-width gradually increases and the residual energy coefficient decreases. Compared with the distribution of the time-averaged axial velocity, that of the instantaneous velocity is more complex and disorderly. The high intensity of the axial turbulence mainly occurs in the mixing layer and the near-wall regions of the diffuser. The annular distribution of the Reynolds stress is mainly in the mixing layer and the recirculation region. There is a low-stress zone between the mixing layer and the high-stress region in the wall-boundary layer. The intensity of the spanwise vortexes is larger than that of the streamwise vortexes, and therefore, the former make greater contribution to the total vorticity. This research provides a better understanding of the flow characteristics in the AJP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
1240
期刊最新文献
The effect of free surface on cloud cavitating flow around a blunt body Bubbly shock propagation as a mechanism of shedding in separated cavitating flows Numerical simulation of a two-dimensional flapping wing in advanced mode Design and experiment of the centrifugal pump impellers with twisted inlet vice blades Novel scaling law for estimating propeller tip vortex cavitation noise from model experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1