CFTR与LH和FGF相互作用在隐睾引起的无精子症和附睾发育不良中的新作用。

IF 2.4 3区 医学 Q2 ANDROLOGY Basic and Clinical Andrology Pub Date : 2022-06-21 DOI:10.1186/s12610-022-00160-0
Faruk Hadziselimovic, Gilvydas Verkauskas, Michael Stadler
{"title":"CFTR与LH和FGF相互作用在隐睾引起的无精子症和附睾发育不良中的新作用。","authors":"Faruk Hadziselimovic,&nbsp;Gilvydas Verkauskas,&nbsp;Michael Stadler","doi":"10.1186/s12610-022-00160-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cryptorchidism occurs frequently in children with cystic fibrosis. Among boys with cryptorchidism and abrogated mini-puberty, the development of the epididymis and the vas deferens is frequently impaired. This finding suggests that a common cause underlies the abnormal development of Ad spermatogonia and the epididymis. The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette transporter protein that acts as a chloride channel. The CFTR gene has been associated with spermatogenesis and male fertility. In boys with cryptorchidism, prepubertal hypogonadotropic hypogonadism induces suboptimal expression of the ankyrin-like protein gene, ASZ1, the P-element induced wimpy testis-like gene, PIWIL, and CFTR. The abrogated expression of these gene leads to transposon reactivation, and ultimately, infertility. Curative gonadotropin-releasing hormone agonist (GnRHa) treatment stimulates the expression of CFTR and PIWIL3, which play important roles in the development of Ad spermatogonia and fertility. Furthermore, GnRHa stimulates the expression of the epididymal androgen-sensitive genes, CRISP1, WFDC8, SPINK13, and PAX2, which thereby promotes epididymal development. This review focuses on molecular evidence that favors a role for CFTR in cryptorchidism-induced infertility. Based on information available in the literature, we interpreted our RNA-Seq expression data obtained from samples before and after randomized GnRHa treatment in boys with bilateral cryptorchidism. We propose that, in boys with cryptorchidism, CFTR expression is controlled by luteinizing hormone and testosterone. Moreover, CFTR regulates the activities of genes that are important for fertility and Wolffian duct differentiation.</p>","PeriodicalId":8730,"journal":{"name":"Basic and Clinical Andrology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210799/pdf/","citationCount":"1","resultStr":"{\"title\":\"A novel role for CFTR interaction with LH and FGF in azoospermia and epididymal maldevelopment caused by cryptorchidism.\",\"authors\":\"Faruk Hadziselimovic,&nbsp;Gilvydas Verkauskas,&nbsp;Michael Stadler\",\"doi\":\"10.1186/s12610-022-00160-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cryptorchidism occurs frequently in children with cystic fibrosis. Among boys with cryptorchidism and abrogated mini-puberty, the development of the epididymis and the vas deferens is frequently impaired. This finding suggests that a common cause underlies the abnormal development of Ad spermatogonia and the epididymis. The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette transporter protein that acts as a chloride channel. The CFTR gene has been associated with spermatogenesis and male fertility. In boys with cryptorchidism, prepubertal hypogonadotropic hypogonadism induces suboptimal expression of the ankyrin-like protein gene, ASZ1, the P-element induced wimpy testis-like gene, PIWIL, and CFTR. The abrogated expression of these gene leads to transposon reactivation, and ultimately, infertility. Curative gonadotropin-releasing hormone agonist (GnRHa) treatment stimulates the expression of CFTR and PIWIL3, which play important roles in the development of Ad spermatogonia and fertility. Furthermore, GnRHa stimulates the expression of the epididymal androgen-sensitive genes, CRISP1, WFDC8, SPINK13, and PAX2, which thereby promotes epididymal development. This review focuses on molecular evidence that favors a role for CFTR in cryptorchidism-induced infertility. Based on information available in the literature, we interpreted our RNA-Seq expression data obtained from samples before and after randomized GnRHa treatment in boys with bilateral cryptorchidism. We propose that, in boys with cryptorchidism, CFTR expression is controlled by luteinizing hormone and testosterone. Moreover, CFTR regulates the activities of genes that are important for fertility and Wolffian duct differentiation.</p>\",\"PeriodicalId\":8730,\"journal\":{\"name\":\"Basic and Clinical Andrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210799/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic and Clinical Andrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12610-022-00160-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANDROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Clinical Andrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12610-022-00160-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 1

摘要

隐睾症常见于囊性纤维化患儿。在隐睾和青春期缩短的男孩中,附睾和输精管的发育经常受损。这一发现表明,一个共同的原因,背后的异常发育的精原细胞和附睾。囊性纤维化跨膜传导调节因子(CFTR)是一种atp结合盒转运蛋白,作为氯离子通道。CFTR基因与精子发生和男性生育能力有关。在患有隐睾症的男孩中,青春期前促性腺功能低下会导致锚蛋白样蛋白基因ASZ1、p元素诱导的睾丸样基因PIWIL和CFTR的亚理想表达。这些基因的废弃表达导致转座子再激活,最终导致不育。治疗性促性腺激素释放激素激动剂(GnRHa)可刺激CFTR和PIWIL3的表达,这两种基因在Ad精原细胞的发育和生育中发挥重要作用。此外,GnRHa刺激附睾雄激素敏感基因CRISP1、WFDC8、SPINK13、PAX2的表达,从而促进附睾发育。本文综述了CFTR在隐睾致不孕症中的作用。基于文献资料,我们对双侧隐睾男孩随机GnRHa治疗前后样本的RNA-Seq表达数据进行了解释。我们认为,在男孩隐睾症中,CFTR的表达受黄体生成素和睾酮的控制。此外,CFTR还调节了对生育和沃尔夫管分化重要的基因的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel role for CFTR interaction with LH and FGF in azoospermia and epididymal maldevelopment caused by cryptorchidism.

Cryptorchidism occurs frequently in children with cystic fibrosis. Among boys with cryptorchidism and abrogated mini-puberty, the development of the epididymis and the vas deferens is frequently impaired. This finding suggests that a common cause underlies the abnormal development of Ad spermatogonia and the epididymis. The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette transporter protein that acts as a chloride channel. The CFTR gene has been associated with spermatogenesis and male fertility. In boys with cryptorchidism, prepubertal hypogonadotropic hypogonadism induces suboptimal expression of the ankyrin-like protein gene, ASZ1, the P-element induced wimpy testis-like gene, PIWIL, and CFTR. The abrogated expression of these gene leads to transposon reactivation, and ultimately, infertility. Curative gonadotropin-releasing hormone agonist (GnRHa) treatment stimulates the expression of CFTR and PIWIL3, which play important roles in the development of Ad spermatogonia and fertility. Furthermore, GnRHa stimulates the expression of the epididymal androgen-sensitive genes, CRISP1, WFDC8, SPINK13, and PAX2, which thereby promotes epididymal development. This review focuses on molecular evidence that favors a role for CFTR in cryptorchidism-induced infertility. Based on information available in the literature, we interpreted our RNA-Seq expression data obtained from samples before and after randomized GnRHa treatment in boys with bilateral cryptorchidism. We propose that, in boys with cryptorchidism, CFTR expression is controlled by luteinizing hormone and testosterone. Moreover, CFTR regulates the activities of genes that are important for fertility and Wolffian duct differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basic and Clinical Andrology
Basic and Clinical Andrology Medicine-Urology
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
22 weeks
期刊介绍: Basic and Clinical Andrology is an open access journal in the domain of andrology covering all aspects of male reproductive and sexual health in both human and animal models. The journal aims to bring to light the various clinical advancements and research developments in andrology from the international community.
期刊最新文献
The storage time of cryopreserved human spermatozoa does not affect pathways involved in fertility Association between low total serum testosterone and body mass index in Australian survivors of testicular cancer: a retrospective analysis. Changing trends in penile prosthesis implantation in China and an overview of postoperative outcomes from a single center. Secondary azoospermia after a successful natural pregnancy: a primary prospective study. Stem cell therapy in diabetic men with erectile dysfunction: a 24-month follow-up of safety and efficacy of two intracavernous autologous bone marrow derived mesenchymal stem cells injections, an open label phase 2 clinical trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1