二维无限浮动梁上移动点源的弯曲重力波阻力

IF 3.4 3区 工程技术 Q1 MECHANICS 水动力学研究与进展:英文版 Pub Date : 2017-12-01 DOI:10.1016/S1001-6058(16)60814-4
Ji-suo Li (李继锁) , Dong-qiang Lu (卢东强)
{"title":"二维无限浮动梁上移动点源的弯曲重力波阻力","authors":"Ji-suo Li (李继锁) ,&nbsp;Dong-qiang Lu (卢东强)","doi":"10.1016/S1001-6058(16)60814-4","DOIUrl":null,"url":null,"abstract":"<div><p>The flexural-gravity wave responses due to a load steadily moving or suddenly accelerated along a rectilinear orbit are analytically studied within the framework of the linear potential theory. A thin viscoelastic plate model is used for a very large floating structure. The initially quiescent fluid in the ocean is assumed to be homogenous, incompressible, and inviscid, and the disturbed motion be irrotational. A moving line source on the plate surface is considered as a moving point in the two-dimensional coordinates. Under the assumptions of small-amplitude wave motion and small plate deflection, a linear fluid-plate coupling model is established. The integral solutions for the surface deflections and the wave resistances are analytically obtained by the Fourier transform method. To study the dynamic characteristics of the flexural-gravity wave response, the asymptotic representations of the wave resistances are derived by the residue theorem and the methods of stationary phase. It shows that the steady wave resistance is zero when the speed of moving load is less than the minimal phase speed. The wave resistances due to the accelerate motion consist of two parts, namely the steady and transient wave responses. Eventually the transient wave resistance declines toward zero and the wave resistance approaches the steady component as the time goes to the infinity. Furthermore, the effect of the strain relaxation time for this viscoelastic plate is studied and it exhibits more influence for a high-speed motion.</p></div>","PeriodicalId":66131,"journal":{"name":"水动力学研究与进展:英文版","volume":"29 6","pages":"Pages 1000-1009"},"PeriodicalIF":3.4000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60814-4","citationCount":"3","resultStr":"{\"title\":\"Flexural-gravity wave resistances due to a moving point source on 2-D infinite floating beam\",\"authors\":\"Ji-suo Li (李继锁) ,&nbsp;Dong-qiang Lu (卢东强)\",\"doi\":\"10.1016/S1001-6058(16)60814-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The flexural-gravity wave responses due to a load steadily moving or suddenly accelerated along a rectilinear orbit are analytically studied within the framework of the linear potential theory. A thin viscoelastic plate model is used for a very large floating structure. The initially quiescent fluid in the ocean is assumed to be homogenous, incompressible, and inviscid, and the disturbed motion be irrotational. A moving line source on the plate surface is considered as a moving point in the two-dimensional coordinates. Under the assumptions of small-amplitude wave motion and small plate deflection, a linear fluid-plate coupling model is established. The integral solutions for the surface deflections and the wave resistances are analytically obtained by the Fourier transform method. To study the dynamic characteristics of the flexural-gravity wave response, the asymptotic representations of the wave resistances are derived by the residue theorem and the methods of stationary phase. It shows that the steady wave resistance is zero when the speed of moving load is less than the minimal phase speed. The wave resistances due to the accelerate motion consist of two parts, namely the steady and transient wave responses. Eventually the transient wave resistance declines toward zero and the wave resistance approaches the steady component as the time goes to the infinity. Furthermore, the effect of the strain relaxation time for this viscoelastic plate is studied and it exhibits more influence for a high-speed motion.</p></div>\",\"PeriodicalId\":66131,\"journal\":{\"name\":\"水动力学研究与进展:英文版\",\"volume\":\"29 6\",\"pages\":\"Pages 1000-1009\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60814-4\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"水动力学研究与进展:英文版\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001605816608144\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"水动力学研究与进展:英文版","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001605816608144","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3

摘要

在线性势理论的框架下,分析研究了当载荷沿直线轨道稳定移动或突然加速时的弯曲重力波响应。采用粘弹性薄板模型分析了大型浮体结构。假定海洋中最初静止的流体是均匀的、不可压缩的、无粘性的,并且扰动运动是无旋的。在二维坐标系中,将板表面上的移动线源视为一个移动点。在小振幅波动和小板挠度假设下,建立了流-板线性耦合模型。用傅里叶变换方法解析得到了表面挠度和波阻的积分解。为了研究弯曲-重力波响应的动力特性,利用残差定理和定相方法推导了波浪阻力的渐近表达式。结果表明,当移动负载的速度小于最小相速时,稳波电阻为零。由加速运动引起的波阻包括两部分,即稳态波响应和瞬态波响应。当时间趋于无穷远时,瞬态波电阻最终趋于零,波电阻趋于稳定分量。此外,还研究了应变松弛时间对粘弹性板的影响,发现对高速运动的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexural-gravity wave resistances due to a moving point source on 2-D infinite floating beam

The flexural-gravity wave responses due to a load steadily moving or suddenly accelerated along a rectilinear orbit are analytically studied within the framework of the linear potential theory. A thin viscoelastic plate model is used for a very large floating structure. The initially quiescent fluid in the ocean is assumed to be homogenous, incompressible, and inviscid, and the disturbed motion be irrotational. A moving line source on the plate surface is considered as a moving point in the two-dimensional coordinates. Under the assumptions of small-amplitude wave motion and small plate deflection, a linear fluid-plate coupling model is established. The integral solutions for the surface deflections and the wave resistances are analytically obtained by the Fourier transform method. To study the dynamic characteristics of the flexural-gravity wave response, the asymptotic representations of the wave resistances are derived by the residue theorem and the methods of stationary phase. It shows that the steady wave resistance is zero when the speed of moving load is less than the minimal phase speed. The wave resistances due to the accelerate motion consist of two parts, namely the steady and transient wave responses. Eventually the transient wave resistance declines toward zero and the wave resistance approaches the steady component as the time goes to the infinity. Furthermore, the effect of the strain relaxation time for this viscoelastic plate is studied and it exhibits more influence for a high-speed motion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
1240
期刊最新文献
The effect of free surface on cloud cavitating flow around a blunt body Bubbly shock propagation as a mechanism of shedding in separated cavitating flows Numerical simulation of a two-dimensional flapping wing in advanced mode Design and experiment of the centrifugal pump impellers with twisted inlet vice blades Novel scaling law for estimating propeller tip vortex cavitation noise from model experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1