易于使用的SARS-CoV-2基因组测序组装器:开发研究

JMIR bioinformatics and biotechnology Pub Date : 2022-03-14 eCollection Date: 2022-01-01 DOI:10.2196/31536
Martina Rueca, Emanuela Giombini, Francesco Messina, Barbara Bartolini, Antonino Di Caro, Maria Rosaria Capobianchi, Cesare Em Gruber
{"title":"易于使用的SARS-CoV-2基因组测序组装器:开发研究","authors":"Martina Rueca,&nbsp;Emanuela Giombini,&nbsp;Francesco Messina,&nbsp;Barbara Bartolini,&nbsp;Antonino Di Caro,&nbsp;Maria Rosaria Capobianchi,&nbsp;Cesare Em Gruber","doi":"10.2196/31536","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early sequencing and quick analysis of the SARS-CoV-2 genome have contributed to the understanding of the dynamics of COVID-19 epidemics and in designing countermeasures at a global level.</p><p><strong>Objective: </strong>Amplicon-based next-generation sequencing (NGS) methods are widely used to sequence the SARS-CoV-2 genome and to identify novel variants that are emerging in rapid succession as well as harboring multiple deletions and amino acid-changing mutations.</p><p><strong>Methods: </strong>To facilitate the analysis of NGS sequencing data obtained from amplicon-based sequencing methods, here, we propose an easy-to-use SARS-CoV-2 genome assembler: the Easy-to-use SARS-CoV-2 Assembler (ESCA) pipeline.</p><p><strong>Results: </strong>Our results have shown that ESCA could perform high-quality genome assembly from Ion Torrent and Illumina raw data and help the user in easily correct low-coverage regions. Moreover, ESCA includes the possibility of comparing assembled genomes of multisample runs through an easy table format.</p><p><strong>Conclusions: </strong>In conclusion, ESCA automatically furnished a variant table output file, fundamental to rapidly recognizing variants of interest. Our pipeline could be a useful method for obtaining a complete, rapid, and accurate analysis even with minimal knowledge in bioinformatics.</p>","PeriodicalId":73552,"journal":{"name":"JMIR bioinformatics and biotechnology","volume":" ","pages":"e31536"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924907/pdf/","citationCount":"5","resultStr":"{\"title\":\"The Easy-to-Use SARS-CoV-2 Assembler for Genome Sequencing: Development Study.\",\"authors\":\"Martina Rueca,&nbsp;Emanuela Giombini,&nbsp;Francesco Messina,&nbsp;Barbara Bartolini,&nbsp;Antonino Di Caro,&nbsp;Maria Rosaria Capobianchi,&nbsp;Cesare Em Gruber\",\"doi\":\"10.2196/31536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Early sequencing and quick analysis of the SARS-CoV-2 genome have contributed to the understanding of the dynamics of COVID-19 epidemics and in designing countermeasures at a global level.</p><p><strong>Objective: </strong>Amplicon-based next-generation sequencing (NGS) methods are widely used to sequence the SARS-CoV-2 genome and to identify novel variants that are emerging in rapid succession as well as harboring multiple deletions and amino acid-changing mutations.</p><p><strong>Methods: </strong>To facilitate the analysis of NGS sequencing data obtained from amplicon-based sequencing methods, here, we propose an easy-to-use SARS-CoV-2 genome assembler: the Easy-to-use SARS-CoV-2 Assembler (ESCA) pipeline.</p><p><strong>Results: </strong>Our results have shown that ESCA could perform high-quality genome assembly from Ion Torrent and Illumina raw data and help the user in easily correct low-coverage regions. Moreover, ESCA includes the possibility of comparing assembled genomes of multisample runs through an easy table format.</p><p><strong>Conclusions: </strong>In conclusion, ESCA automatically furnished a variant table output file, fundamental to rapidly recognizing variants of interest. Our pipeline could be a useful method for obtaining a complete, rapid, and accurate analysis even with minimal knowledge in bioinformatics.</p>\",\"PeriodicalId\":73552,\"journal\":{\"name\":\"JMIR bioinformatics and biotechnology\",\"volume\":\" \",\"pages\":\"e31536\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924907/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR bioinformatics and biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/31536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR bioinformatics and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/31536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

背景:SARS-CoV-2基因组的早期测序和快速分析有助于了解COVID-19流行动态和在全球层面制定对策。目的:基于扩增子的新一代测序(NGS)方法被广泛用于对SARS-CoV-2基因组进行测序,并鉴定快速连续出现的新变体,以及包含多个缺失和氨基酸改变突变的新变体。方法:为了便于分析基于扩增子测序方法获得的NGS测序数据,我们提出了一种易于使用的SARS-CoV-2基因组组装器:easy- use SARS-CoV-2 assembler (ESCA)管道。结果:我们的研究结果表明,ESCA可以从Ion Torrent和Illumina原始数据中进行高质量的基因组组装,并帮助用户轻松纠正低覆盖区域。此外,ESCA包括通过一个简单的表格格式比较多样本运行的组装基因组的可能性。结论:总之,ESCA自动提供了一个变体表输出文件,这是快速识别感兴趣的变体的基础。我们的管道可以成为一种有用的方法,即使在生物信息学方面的知识很少,也可以获得完整、快速和准确的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Easy-to-Use SARS-CoV-2 Assembler for Genome Sequencing: Development Study.

Background: Early sequencing and quick analysis of the SARS-CoV-2 genome have contributed to the understanding of the dynamics of COVID-19 epidemics and in designing countermeasures at a global level.

Objective: Amplicon-based next-generation sequencing (NGS) methods are widely used to sequence the SARS-CoV-2 genome and to identify novel variants that are emerging in rapid succession as well as harboring multiple deletions and amino acid-changing mutations.

Methods: To facilitate the analysis of NGS sequencing data obtained from amplicon-based sequencing methods, here, we propose an easy-to-use SARS-CoV-2 genome assembler: the Easy-to-use SARS-CoV-2 Assembler (ESCA) pipeline.

Results: Our results have shown that ESCA could perform high-quality genome assembly from Ion Torrent and Illumina raw data and help the user in easily correct low-coverage regions. Moreover, ESCA includes the possibility of comparing assembled genomes of multisample runs through an easy table format.

Conclusions: In conclusion, ESCA automatically furnished a variant table output file, fundamental to rapidly recognizing variants of interest. Our pipeline could be a useful method for obtaining a complete, rapid, and accurate analysis even with minimal knowledge in bioinformatics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Effect of a Web-Based Heartfulness Program on the Mental Well-Being, Biomarkers, and Gene Expression Profile of Health Care Students: Randomized Controlled Trial. Eco-Evolutionary Drivers of Vibrio parahaemolyticus Sequence Type 3 Expansion: Retrospective Machine Learning Approach. Exploring the Intersection of Schizophrenia, Machine Learning, and Genomics: Scoping Review. Ethical Considerations in Human-Centered AI: Advancing Oncology Chatbots Through Large Language Models. Enhancing Suicide Risk Prediction With Polygenic Scores in Psychiatric Emergency Settings: Prospective Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1