Gustave Raoul Nkoue Ndondo, J.-L. Probst, J. Ndjama, Jules Remy Ndam Ngoupayou, J.-L. Boeglin, G. E. Takem, F. Brunet, J. Mortatti, F. Gauthier-Lafaye, J.-J. Braun, G. E. Ekodeck
{"title":"稳定碳同位素δ13C在喀麦隆Nsimi小型热带水源集水区碳源和碳过程的表征","authors":"Gustave Raoul Nkoue Ndondo, J.-L. Probst, J. Ndjama, Jules Remy Ndam Ngoupayou, J.-L. Boeglin, G. E. Takem, F. Brunet, J. Mortatti, F. Gauthier-Lafaye, J.-J. Braun, G. E. Ekodeck","doi":"10.1007/s10498-020-09386-8","DOIUrl":null,"url":null,"abstract":"<p>Stream carbon fluxes are one of the major components in the global C cycle, yet the discrimination of the various sources of stream carbon remains to a large extent unclear and less is known about the biogeochemical transformations that accompany the transfer of C from soils to streams. Here, we used patterns in stream water and groundwater δ<sup>13</sup>C values in a small forested tropical headwater catchment to investigate the source and contribution from the soil carbon pools to stream organic and inorganic carbon behavior over seasonal scales. Stream organic carbon (DOC and POC) comes mainly from the upper rich soil organic carbon horizons and derived from total organic carbon (TOC) of biogenic source. The isotopic compositions δ<sup>13</sup>C<sub>TOC</sub>, δ<sup>13</sup>C<sub>DOC</sub> and δ<sup>13</sup>C<sub>POC</sub> of these carbon species were very close (??30‰ to ??26‰) and typical of the forested C3 vegetation. The relationship observed between DOC and log pCO<sub>2</sub> and δ<sup>13</sup>C<sub>DIC</sub> indicated that besides the considerable CO<sub>2</sub> evasion that occurs as DIC is transported from soils to streams, there were also other processes affecting the stream DIC pool. In-stream mineralization of DOC and mixing of atmospheric carbon had a significant influence on the δ<sup>13</sup>C<sub>DIC</sub> values. These processes which varied seasonally with hydrological changes represent the main control on DOC and DIC cycling in the wet tropical milieu. The rapid turnover of carbon on hillside soils, the transformation of TOC to DOC in wetland soils and further mineralization of stream DOC to DIC favor the evasion of C, making the zone a source of carbon to the atmosphere.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"27 1","pages":"1 - 30"},"PeriodicalIF":1.7000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09386-8","citationCount":"8","resultStr":"{\"title\":\"Stable Carbon Isotopes δ13C as a Proxy for Characterizing Carbon Sources and Processes in a Small Tropical Headwater Catchment: Nsimi, Cameroon\",\"authors\":\"Gustave Raoul Nkoue Ndondo, J.-L. Probst, J. Ndjama, Jules Remy Ndam Ngoupayou, J.-L. Boeglin, G. E. Takem, F. Brunet, J. Mortatti, F. Gauthier-Lafaye, J.-J. Braun, G. E. Ekodeck\",\"doi\":\"10.1007/s10498-020-09386-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stream carbon fluxes are one of the major components in the global C cycle, yet the discrimination of the various sources of stream carbon remains to a large extent unclear and less is known about the biogeochemical transformations that accompany the transfer of C from soils to streams. Here, we used patterns in stream water and groundwater δ<sup>13</sup>C values in a small forested tropical headwater catchment to investigate the source and contribution from the soil carbon pools to stream organic and inorganic carbon behavior over seasonal scales. Stream organic carbon (DOC and POC) comes mainly from the upper rich soil organic carbon horizons and derived from total organic carbon (TOC) of biogenic source. The isotopic compositions δ<sup>13</sup>C<sub>TOC</sub>, δ<sup>13</sup>C<sub>DOC</sub> and δ<sup>13</sup>C<sub>POC</sub> of these carbon species were very close (??30‰ to ??26‰) and typical of the forested C3 vegetation. The relationship observed between DOC and log pCO<sub>2</sub> and δ<sup>13</sup>C<sub>DIC</sub> indicated that besides the considerable CO<sub>2</sub> evasion that occurs as DIC is transported from soils to streams, there were also other processes affecting the stream DIC pool. In-stream mineralization of DOC and mixing of atmospheric carbon had a significant influence on the δ<sup>13</sup>C<sub>DIC</sub> values. These processes which varied seasonally with hydrological changes represent the main control on DOC and DIC cycling in the wet tropical milieu. The rapid turnover of carbon on hillside soils, the transformation of TOC to DOC in wetland soils and further mineralization of stream DOC to DIC favor the evasion of C, making the zone a source of carbon to the atmosphere.</p>\",\"PeriodicalId\":8102,\"journal\":{\"name\":\"Aquatic Geochemistry\",\"volume\":\"27 1\",\"pages\":\"1 - 30\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10498-020-09386-8\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10498-020-09386-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-020-09386-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Stable Carbon Isotopes δ13C as a Proxy for Characterizing Carbon Sources and Processes in a Small Tropical Headwater Catchment: Nsimi, Cameroon
Stream carbon fluxes are one of the major components in the global C cycle, yet the discrimination of the various sources of stream carbon remains to a large extent unclear and less is known about the biogeochemical transformations that accompany the transfer of C from soils to streams. Here, we used patterns in stream water and groundwater δ13C values in a small forested tropical headwater catchment to investigate the source and contribution from the soil carbon pools to stream organic and inorganic carbon behavior over seasonal scales. Stream organic carbon (DOC and POC) comes mainly from the upper rich soil organic carbon horizons and derived from total organic carbon (TOC) of biogenic source. The isotopic compositions δ13CTOC, δ13CDOC and δ13CPOC of these carbon species were very close (??30‰ to ??26‰) and typical of the forested C3 vegetation. The relationship observed between DOC and log pCO2 and δ13CDIC indicated that besides the considerable CO2 evasion that occurs as DIC is transported from soils to streams, there were also other processes affecting the stream DIC pool. In-stream mineralization of DOC and mixing of atmospheric carbon had a significant influence on the δ13CDIC values. These processes which varied seasonally with hydrological changes represent the main control on DOC and DIC cycling in the wet tropical milieu. The rapid turnover of carbon on hillside soils, the transformation of TOC to DOC in wetland soils and further mineralization of stream DOC to DIC favor the evasion of C, making the zone a source of carbon to the atmosphere.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.