α-环糊精包合对氧磷、对硫磷和甲基对硫磷:GFN2-xTB多平衡量子研究

IF 1.7 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Inclusion Phenomena and Macrocyclic Chemistry Pub Date : 2023-07-01 DOI:10.1007/s10847-023-01192-3
Jonathan Campos Marcelino, Carolina Lúcia Cardoso Ribeiro, Gleicy Teixeira, Erick Ferreira Lacerda, Cleber Paulo Andrada Anconi
{"title":"α-环糊精包合对氧磷、对硫磷和甲基对硫磷:GFN2-xTB多平衡量子研究","authors":"Jonathan Campos Marcelino,&nbsp;Carolina Lúcia Cardoso Ribeiro,&nbsp;Gleicy Teixeira,&nbsp;Erick Ferreira Lacerda,&nbsp;Cleber Paulo Andrada Anconi","doi":"10.1007/s10847-023-01192-3","DOIUrl":null,"url":null,"abstract":"<div><p>A new theoretical approach was recently addressed to predict cyclodextrin host–guest binding constants with the GFN2-xTB semiempirical quantum method. Within such a strategy, a set of starting supramolecular arrangements is automatically obtained through the UD-APARM software, and many optimized host–guest systems are used to obtain each binding constant. In the present work, within the scope of the multi-equilibrium treatment, we carried out a theoretical study concerning the host–guest systems formed with paraoxon (PRX), methyl-parathion (MPTN), and parathion (PTN) into α-cyclodextrin (α-CD), for which experimental data were addressed. Those guests correspond to pesticides in use, and their inclusion plays a role in remediation technology. The procedure for estimating binding constants for the host–guest system is discussed in terms of the ranges for the supramolecular parameters employed in exploring the GFN2-xTB Potential Energy Surface (PES). As a result, by investigating an unprecedented number of starting systems (3,076), we identified that proper exploration of the GFN2-xTB PES gives a reliable prediction of the binding constant in solution. Furthermore, with the study of different starting associations, for PTN/α-CD, we found an excellent linear correlation (R<sup>2</sup> = 0.987) between GFN2-xTB data and experimental information, which, as in our previous study, supports the discussed methodology for application in predicting binding constants for CD-based host–guest systems.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":54324,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":"103 7-8","pages":"263 - 276"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10847-023-01192-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Inclusion of paraoxon, parathion, and methyl parathion into α-cyclodextrin: a GFN2-xTB multi-equilibrium quantum study\",\"authors\":\"Jonathan Campos Marcelino,&nbsp;Carolina Lúcia Cardoso Ribeiro,&nbsp;Gleicy Teixeira,&nbsp;Erick Ferreira Lacerda,&nbsp;Cleber Paulo Andrada Anconi\",\"doi\":\"10.1007/s10847-023-01192-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new theoretical approach was recently addressed to predict cyclodextrin host–guest binding constants with the GFN2-xTB semiempirical quantum method. Within such a strategy, a set of starting supramolecular arrangements is automatically obtained through the UD-APARM software, and many optimized host–guest systems are used to obtain each binding constant. In the present work, within the scope of the multi-equilibrium treatment, we carried out a theoretical study concerning the host–guest systems formed with paraoxon (PRX), methyl-parathion (MPTN), and parathion (PTN) into α-cyclodextrin (α-CD), for which experimental data were addressed. Those guests correspond to pesticides in use, and their inclusion plays a role in remediation technology. The procedure for estimating binding constants for the host–guest system is discussed in terms of the ranges for the supramolecular parameters employed in exploring the GFN2-xTB Potential Energy Surface (PES). As a result, by investigating an unprecedented number of starting systems (3,076), we identified that proper exploration of the GFN2-xTB PES gives a reliable prediction of the binding constant in solution. Furthermore, with the study of different starting associations, for PTN/α-CD, we found an excellent linear correlation (R<sup>2</sup> = 0.987) between GFN2-xTB data and experimental information, which, as in our previous study, supports the discussed methodology for application in predicting binding constants for CD-based host–guest systems.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":54324,\"journal\":{\"name\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"volume\":\"103 7-8\",\"pages\":\"263 - 276\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10847-023-01192-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10847-023-01192-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-023-01192-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了用GFN2-xTB半经验量子方法预测环糊精主客体结合常数的新理论方法。在这种策略中,通过UD-APARM软件自动获得一组起始的超分子排列,并使用许多优化的主-客系统来获得每个结合常数。本文在多平衡处理的范围内,对对氧磷(PRX)、甲基对硫磷(MPTN)和对硫磷(PTN)生成α-环糊精(α-CD)的主客体体系进行了理论研究,并对实验数据进行了处理。这些客体对应于使用中的农药,它们的包含在修复技术中起作用。根据研究GFN2-xTB势能面(PES)时所采用的超分子参数的范围,讨论了估计主客体体系结合常数的过程。因此,通过研究空前数量的启动体系(3,076),我们发现对GFN2-xTB PES进行适当的探索可以可靠地预测溶液中的结合常数。此外,通过不同起始关联的研究,对于PTN/α-CD,我们发现GFN2-xTB数据与实验信息之间具有良好的线性相关性(R2 = 0.987),这与我们之前的研究一样,支持了所讨论的方法用于预测基于cd的主-客系统的结合常数。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inclusion of paraoxon, parathion, and methyl parathion into α-cyclodextrin: a GFN2-xTB multi-equilibrium quantum study

A new theoretical approach was recently addressed to predict cyclodextrin host–guest binding constants with the GFN2-xTB semiempirical quantum method. Within such a strategy, a set of starting supramolecular arrangements is automatically obtained through the UD-APARM software, and many optimized host–guest systems are used to obtain each binding constant. In the present work, within the scope of the multi-equilibrium treatment, we carried out a theoretical study concerning the host–guest systems formed with paraoxon (PRX), methyl-parathion (MPTN), and parathion (PTN) into α-cyclodextrin (α-CD), for which experimental data were addressed. Those guests correspond to pesticides in use, and their inclusion plays a role in remediation technology. The procedure for estimating binding constants for the host–guest system is discussed in terms of the ranges for the supramolecular parameters employed in exploring the GFN2-xTB Potential Energy Surface (PES). As a result, by investigating an unprecedented number of starting systems (3,076), we identified that proper exploration of the GFN2-xTB PES gives a reliable prediction of the binding constant in solution. Furthermore, with the study of different starting associations, for PTN/α-CD, we found an excellent linear correlation (R2 = 0.987) between GFN2-xTB data and experimental information, which, as in our previous study, supports the discussed methodology for application in predicting binding constants for CD-based host–guest systems.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inclusion Phenomena and Macrocyclic Chemistry
Journal of Inclusion Phenomena and Macrocyclic Chemistry Agricultural and Biological Sciences-Food Science
CiteScore
4.10
自引率
8.70%
发文量
54
期刊介绍: The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites. The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.
期刊最新文献
Meet the new Editor-in-Chief Structural investigations, DFT, anti-oxidant and α-amylase inhibitory activity of metal complexes of benzothiazole based hydrazone Tetrakis(benzoxazine) calix[4]resorcinarenes as hosts for small molecules Nanoporous carbon, its pharmaceutical applications and metal organic frameworks Inclusion of paraoxon, parathion, and methyl parathion into α-cyclodextrin: a GFN2-xTB multi-equilibrium quantum study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1