细胞质和肌肉特异性肌动蛋白封盖蛋白之间的保护和分化:来自盘状盘齿龙细胞质Cap32/34晶体结构的见解

Q3 Biochemistry, Genetics and Molecular Biology BMC Structural Biology Pub Date : 2012-06-01 DOI:10.1186/1472-6807-12-12
Christian Eckert, Agnieszka Goretzki, Maria Faberova, Martin Kollmar
{"title":"细胞质和肌肉特异性肌动蛋白封盖蛋白之间的保护和分化:来自盘状盘齿龙细胞质Cap32/34晶体结构的见解","authors":"Christian Eckert,&nbsp;Agnieszka Goretzki,&nbsp;Maria Faberova,&nbsp;Martin Kollmar","doi":"10.1186/1472-6807-12-12","DOIUrl":null,"url":null,"abstract":"<p>Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in <i>Dictyostelium discoideum</i>, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an α- and β-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a “cap” by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles.</p><p>To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32?=?β- and 34?=?α-subunit) from the cellular slime mold <i>Dictyostelium</i> at 2.2?? resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible β-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the α-subunit. In the α-subunit we observed a bending motion of the β-sheet region located opposite to the position of the C-terminal β-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the β-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ).</p><p>The structure of Cap32/34 from <i>Dictyostelium discoideum</i> allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the α-subunit, a loop region in the β-subunit, and the surface of the α-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.</p>","PeriodicalId":51240,"journal":{"name":"BMC Structural Biology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1472-6807-12-12","citationCount":"4","resultStr":"{\"title\":\"Conservation and divergence between cytoplasmic and muscle-specific actin capping proteins: insights from the crystal structure of cytoplasmic Cap32/34 from Dictyostelium discoideum\",\"authors\":\"Christian Eckert,&nbsp;Agnieszka Goretzki,&nbsp;Maria Faberova,&nbsp;Martin Kollmar\",\"doi\":\"10.1186/1472-6807-12-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in <i>Dictyostelium discoideum</i>, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an α- and β-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a “cap” by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles.</p><p>To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32?=?β- and 34?=?α-subunit) from the cellular slime mold <i>Dictyostelium</i> at 2.2?? resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible β-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the α-subunit. In the α-subunit we observed a bending motion of the β-sheet region located opposite to the position of the C-terminal β-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the β-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ).</p><p>The structure of Cap32/34 from <i>Dictyostelium discoideum</i> allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the α-subunit, a loop region in the β-subunit, and the surface of the α-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.</p>\",\"PeriodicalId\":51240,\"journal\":{\"name\":\"BMC Structural Biology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1472-6807-12-12\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Structural Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/1472-6807-12-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/1472-6807-12-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

摘要

封盖蛋白(Capping protein, CP)在肌细胞中被称为CapZ,在盘状盘基肌门中被称为Cap32/34,在肌动蛋白丝动力学中起着重要的调节作用。CP是一种普遍表达的异二聚体,由α-和β-亚基组成。它与肌动蛋白纤维的快速生长末端紧密结合,从而通过阻止肌动蛋白亚基的添加和丢失而起到“帽”的作用。脊椎动物有两种CP的体细胞变体,一种主要存在于非肌肉组织的细胞外周,另一种主要存在于骨骼肌的z盘。为了阐明胞质和肌商业CP变异之间的结构和功能差异,我们解决了Cap32/34的原子结构(32?=?β-和34 α-亚基)从细胞黏菌盘基钢中提取,温度为2.2℃。并与鸡肌CapZ进行比较。两种同源物具有相似的整体结构,包括α-亚基c端(α-触手)的附着和可弯曲的β-触手。然而,结构表现出明显的差异,表明α-亚基内具有相当大的结构灵活性。在α-亚基中,我们观察到位于c端β-触手相反位置的β-片区向连接异二聚体的反平行螺旋方向发生弯曲运动。最近报道了一个主要由β-亚基引起的双结构域扭转。在这两个结构域的铰链处,Cap32/34包含一个细长且高度柔性的环,据报道,这对于细胞质CP与肌动蛋白的相互作用很重要,并且可能有助于细胞质与肌动蛋白(CapZ)相比更动态的结合。Dictyostelium disideum的Cap32/34的结构可以详细地分析和比较CP的细胞质和肌聚体变体。在α-亚基、β-亚基的环区和α-球表面可以发现显著的结构灵活性,其中细胞质和肌聚体之间的氨基酸差异位于α-球表面。因此,Cap32/34的晶体结构提出了CP变异体对肌动蛋白丝的刺端有不同结合行为的可能性,这一特征可能是由于对不同环境的适应而产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conservation and divergence between cytoplasmic and muscle-specific actin capping proteins: insights from the crystal structure of cytoplasmic Cap32/34 from Dictyostelium discoideum

Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in Dictyostelium discoideum, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an α- and β-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a “cap” by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles.

To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32?=?β- and 34?=?α-subunit) from the cellular slime mold Dictyostelium at 2.2?? resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible β-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the α-subunit. In the α-subunit we observed a bending motion of the β-sheet region located opposite to the position of the C-terminal β-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the β-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ).

The structure of Cap32/34 from Dictyostelium discoideum allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the α-subunit, a loop region in the β-subunit, and the surface of the α-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: BMC Structural Biology is an open access, peer-reviewed journal that considers articles on investigations into the structure of biological macromolecules, including solving structures, structural and functional analyses, and computational modeling.
期刊最新文献
Characterization of putative proteins encoded by variable ORFs in white spot syndrome virus genome Correction to: Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region Effect of low complexity regions within the PvMSP3α block II on the tertiary structure of the protein and implications to immune escape mechanisms QRNAS: software tool for refinement of nucleic acid structures Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1