{"title":"用平面平行电离室测定质子束的积分深度剂量。","authors":"Phatthraporn Thasasi, Sirinya Ruangchan, Puntiwa Oonsiri, Sornjarod Oonsiri","doi":"10.14338/IJPT-22-00006.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to determine the integral depth-dose curves and assess the geometric collection efficiency of different detector diameters in proton pencil beam scanning.</p><p><strong>Materials and methods: </strong>The Varian ProBeam Compact spot scanning system was used for this study. The integral depth-dose curves with a proton energy range of 130 to 220 MeV were acquired with 2 types of Bragg peak chambers: 34070 with 8-cm diameter and 34089 with 15-cm diameter (PTW), multi-layer ionization chamber with 12-cm diameter (Giraffe, IBA Dosimetry), and PeakFinder with 8-cm diameter (PTW). To assess geometric collection efficiency, the integral depth-dose curves of 8- and 12-cm chamber diameters were compared to a 15-cm chamber diameter as the largest detector.</p><p><strong>Results: </strong>At intermediate depths of 130, 150, 190, and 220 MeV, PTW Bragg peak chamber type 34089 provided the highest integral depth-dose curves followed by IBA Giraffe, PTW Bragg peak chamber type 34070, and PTW PeakFinder. Moreover, PTW Bragg peak chamber type 34089 had increased geometric collection efficiency up to 3.8%, 6.1%, and 3.1% when compared to PTW Bragg peak chamber type 34070, PTW PeakFinder, and IBA Giraffe, respectively.</p><p><strong>Conclusion: </strong>A larger plane-parallel ionization chamber could increase the geometric collection efficiency of the detector, especially at intermediate depths and high-energy proton beams.</p>","PeriodicalId":36923,"journal":{"name":"International Journal of Particle Therapy","volume":"9 2","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415752/pdf/","citationCount":"0","resultStr":"{\"title\":\"Determination of Integral Depth Dose in Proton Pencil Beam Using Plane-parallel Ionization Chambers.\",\"authors\":\"Phatthraporn Thasasi, Sirinya Ruangchan, Puntiwa Oonsiri, Sornjarod Oonsiri\",\"doi\":\"10.14338/IJPT-22-00006.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to determine the integral depth-dose curves and assess the geometric collection efficiency of different detector diameters in proton pencil beam scanning.</p><p><strong>Materials and methods: </strong>The Varian ProBeam Compact spot scanning system was used for this study. The integral depth-dose curves with a proton energy range of 130 to 220 MeV were acquired with 2 types of Bragg peak chambers: 34070 with 8-cm diameter and 34089 with 15-cm diameter (PTW), multi-layer ionization chamber with 12-cm diameter (Giraffe, IBA Dosimetry), and PeakFinder with 8-cm diameter (PTW). To assess geometric collection efficiency, the integral depth-dose curves of 8- and 12-cm chamber diameters were compared to a 15-cm chamber diameter as the largest detector.</p><p><strong>Results: </strong>At intermediate depths of 130, 150, 190, and 220 MeV, PTW Bragg peak chamber type 34089 provided the highest integral depth-dose curves followed by IBA Giraffe, PTW Bragg peak chamber type 34070, and PTW PeakFinder. Moreover, PTW Bragg peak chamber type 34089 had increased geometric collection efficiency up to 3.8%, 6.1%, and 3.1% when compared to PTW Bragg peak chamber type 34070, PTW PeakFinder, and IBA Giraffe, respectively.</p><p><strong>Conclusion: </strong>A larger plane-parallel ionization chamber could increase the geometric collection efficiency of the detector, especially at intermediate depths and high-energy proton beams.</p>\",\"PeriodicalId\":36923,\"journal\":{\"name\":\"International Journal of Particle Therapy\",\"volume\":\"9 2\",\"pages\":\"1-9\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415752/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Particle Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14338/IJPT-22-00006.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Particle Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14338/IJPT-22-00006.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Determination of Integral Depth Dose in Proton Pencil Beam Using Plane-parallel Ionization Chambers.
Purpose: This study aimed to determine the integral depth-dose curves and assess the geometric collection efficiency of different detector diameters in proton pencil beam scanning.
Materials and methods: The Varian ProBeam Compact spot scanning system was used for this study. The integral depth-dose curves with a proton energy range of 130 to 220 MeV were acquired with 2 types of Bragg peak chambers: 34070 with 8-cm diameter and 34089 with 15-cm diameter (PTW), multi-layer ionization chamber with 12-cm diameter (Giraffe, IBA Dosimetry), and PeakFinder with 8-cm diameter (PTW). To assess geometric collection efficiency, the integral depth-dose curves of 8- and 12-cm chamber diameters were compared to a 15-cm chamber diameter as the largest detector.
Results: At intermediate depths of 130, 150, 190, and 220 MeV, PTW Bragg peak chamber type 34089 provided the highest integral depth-dose curves followed by IBA Giraffe, PTW Bragg peak chamber type 34070, and PTW PeakFinder. Moreover, PTW Bragg peak chamber type 34089 had increased geometric collection efficiency up to 3.8%, 6.1%, and 3.1% when compared to PTW Bragg peak chamber type 34070, PTW PeakFinder, and IBA Giraffe, respectively.
Conclusion: A larger plane-parallel ionization chamber could increase the geometric collection efficiency of the detector, especially at intermediate depths and high-energy proton beams.