带 H 的可扩展且无偏的不和谐度量。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-12-15 DOI:10.1093/biostatistics/kxac035
Nathan Dyjack, Daniel N Baker, Vladimir Braverman, Ben Langmead, Stephanie C Hicks
{"title":"带 H 的可扩展且无偏的不和谐度量。","authors":"Nathan Dyjack, Daniel N Baker, Vladimir Braverman, Ben Langmead, Stephanie C Hicks","doi":"10.1093/biostatistics/kxac035","DOIUrl":null,"url":null,"abstract":"<p><p>A standard unsupervised analysis is to cluster observations into discrete groups using a dissimilarity measure, such as Euclidean distance. If there does not exist a ground-truth label for each observation necessary for external validity metrics, then internal validity metrics, such as the tightness or separation of the clusters, are often used. However, the interpretation of these internal metrics can be problematic when using different dissimilarity measures as they have different magnitudes and ranges of values that they span. To address this problem, previous work introduced the \"scale-agnostic\" $G_{+}$ discordance metric; however, this internal metric is slow to calculate for large data. Furthermore, in the setting of unsupervised clustering with $k$ groups, we show that $G_{+}$ varies as a function of the proportion of observations assigned to each of the groups (or clusters), referred to as the group balance, which is an undesirable property. To address this problem, we propose a modification of $G_{+}$, referred to as $H_{+}$, and demonstrate that $H_{+}$ does not vary as a function of group balance using a simulation study and with public single-cell RNA-sequencing data. Finally, we provide scalable approaches to estimate $H_{+}$, which are available in the $\\mathtt{fasthplus}$ R package.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724244/pdf/","citationCount":"0","resultStr":"{\"title\":\"A scalable and unbiased discordance metric with H.\",\"authors\":\"Nathan Dyjack, Daniel N Baker, Vladimir Braverman, Ben Langmead, Stephanie C Hicks\",\"doi\":\"10.1093/biostatistics/kxac035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A standard unsupervised analysis is to cluster observations into discrete groups using a dissimilarity measure, such as Euclidean distance. If there does not exist a ground-truth label for each observation necessary for external validity metrics, then internal validity metrics, such as the tightness or separation of the clusters, are often used. However, the interpretation of these internal metrics can be problematic when using different dissimilarity measures as they have different magnitudes and ranges of values that they span. To address this problem, previous work introduced the \\\"scale-agnostic\\\" $G_{+}$ discordance metric; however, this internal metric is slow to calculate for large data. Furthermore, in the setting of unsupervised clustering with $k$ groups, we show that $G_{+}$ varies as a function of the proportion of observations assigned to each of the groups (or clusters), referred to as the group balance, which is an undesirable property. To address this problem, we propose a modification of $G_{+}$, referred to as $H_{+}$, and demonstrate that $H_{+}$ does not vary as a function of group balance using a simulation study and with public single-cell RNA-sequencing data. Finally, we provide scalable approaches to estimate $H_{+}$, which are available in the $\\\\mathtt{fasthplus}$ R package.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724244/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac035\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

标准的无监督分析是使用欧氏距离等差异度量将观测数据聚类为离散组。如果不存在外部有效性度量所需的每个观测值的真实标签,那么通常就会使用内部有效性度量,如聚类的紧密度或分离度。不过,在使用不同的异质性度量时,这些内部度量的解释可能会有问题,因为它们的量级和跨度值范围不同。为了解决这个问题,以前的工作引入了 "规模无关 "的 $G_{+}$ 不一致性度量;但是,对于大型数据来说,这种内部度量的计算速度很慢。此外,在具有 $k$ 组的无监督聚类设置中,我们发现 $G_{+}$ 会随分配给每个组(或簇)的观测值比例(称为组平衡)的函数而变化,这是一个不理想的特性。为了解决这个问题,我们提出了对 $G_{+}$ 的修改,称为 $H_{+}$,并通过模拟研究和公开的单细胞 RNA 序列数据证明了 $H_{+}$ 不会随着组平衡的函数而变化。最后,我们提供了估算 $H_{+}$ 的可扩展方法,这些方法可在 $\mathtt{fasthplus}$ R 软件包中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A scalable and unbiased discordance metric with H.

A standard unsupervised analysis is to cluster observations into discrete groups using a dissimilarity measure, such as Euclidean distance. If there does not exist a ground-truth label for each observation necessary for external validity metrics, then internal validity metrics, such as the tightness or separation of the clusters, are often used. However, the interpretation of these internal metrics can be problematic when using different dissimilarity measures as they have different magnitudes and ranges of values that they span. To address this problem, previous work introduced the "scale-agnostic" $G_{+}$ discordance metric; however, this internal metric is slow to calculate for large data. Furthermore, in the setting of unsupervised clustering with $k$ groups, we show that $G_{+}$ varies as a function of the proportion of observations assigned to each of the groups (or clusters), referred to as the group balance, which is an undesirable property. To address this problem, we propose a modification of $G_{+}$, referred to as $H_{+}$, and demonstrate that $H_{+}$ does not vary as a function of group balance using a simulation study and with public single-cell RNA-sequencing data. Finally, we provide scalable approaches to estimate $H_{+}$, which are available in the $\mathtt{fasthplus}$ R package.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1