{"title":"ELK1在膀胱癌进展中通过募集HDAC2抑制SYTL1表达。","authors":"Jiansong Wang, Jianjun Luo, Xuecheng Wu, Zhuo Li","doi":"10.1007/s13577-022-00789-z","DOIUrl":null,"url":null,"abstract":"<p><p>ETS transcription factor (ELK1) stimulates the expression of genes at the onset of the cell cycle and participates in early developmental programming. Here, we investigated whether alterations of ELK1 lead to progression of bladder cancer (BCa), a main neoplasm of urinary tract, and clarified the function of ELK1 in BCa. Using the GEO database, we identified ELK1 as the most significantly overexpressed gene in BCa, which was substantiated in the acquired clinical samples and cells. Silencing of ELK1 inhibited the malignant phenotype of BCa cells. Further analysis revealed that ELK1 synergized with histone deacetylase 2 (HDAC2) to specifically bind to the synaptotagmin like 1 (SYTL1) promoter, thereby repressing SYTL1 transcription and protein expression. Depletion of SYTL1 reversed the repressive effects of ELK1 depletion on the malignant phenotype of BCa cells. Our in vitro findings were reproduced in vivo on a nude mouse tumorigenic model. Together, our results reveal that ELK1, through suppression of SYTL1 via HDAC2, supports the malignant phenotype of BCa cells.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1961-1975"},"PeriodicalIF":4.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ELK1 suppresses SYTL1 expression by recruiting HDAC2 in bladder cancer progression.\",\"authors\":\"Jiansong Wang, Jianjun Luo, Xuecheng Wu, Zhuo Li\",\"doi\":\"10.1007/s13577-022-00789-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ETS transcription factor (ELK1) stimulates the expression of genes at the onset of the cell cycle and participates in early developmental programming. Here, we investigated whether alterations of ELK1 lead to progression of bladder cancer (BCa), a main neoplasm of urinary tract, and clarified the function of ELK1 in BCa. Using the GEO database, we identified ELK1 as the most significantly overexpressed gene in BCa, which was substantiated in the acquired clinical samples and cells. Silencing of ELK1 inhibited the malignant phenotype of BCa cells. Further analysis revealed that ELK1 synergized with histone deacetylase 2 (HDAC2) to specifically bind to the synaptotagmin like 1 (SYTL1) promoter, thereby repressing SYTL1 transcription and protein expression. Depletion of SYTL1 reversed the repressive effects of ELK1 depletion on the malignant phenotype of BCa cells. Our in vitro findings were reproduced in vivo on a nude mouse tumorigenic model. Together, our results reveal that ELK1, through suppression of SYTL1 via HDAC2, supports the malignant phenotype of BCa cells.</p>\",\"PeriodicalId\":13228,\"journal\":{\"name\":\"Human Cell\",\"volume\":\"35 6\",\"pages\":\"1961-1975\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-022-00789-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00789-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
ELK1 suppresses SYTL1 expression by recruiting HDAC2 in bladder cancer progression.
ETS transcription factor (ELK1) stimulates the expression of genes at the onset of the cell cycle and participates in early developmental programming. Here, we investigated whether alterations of ELK1 lead to progression of bladder cancer (BCa), a main neoplasm of urinary tract, and clarified the function of ELK1 in BCa. Using the GEO database, we identified ELK1 as the most significantly overexpressed gene in BCa, which was substantiated in the acquired clinical samples and cells. Silencing of ELK1 inhibited the malignant phenotype of BCa cells. Further analysis revealed that ELK1 synergized with histone deacetylase 2 (HDAC2) to specifically bind to the synaptotagmin like 1 (SYTL1) promoter, thereby repressing SYTL1 transcription and protein expression. Depletion of SYTL1 reversed the repressive effects of ELK1 depletion on the malignant phenotype of BCa cells. Our in vitro findings were reproduced in vivo on a nude mouse tumorigenic model. Together, our results reveal that ELK1, through suppression of SYTL1 via HDAC2, supports the malignant phenotype of BCa cells.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.