水下冰块稳定性分析

IF 3.4 3区 工程技术 Q1 MECHANICS 水动力学研究与进展:英文版 Pub Date : 2017-06-01 DOI:10.1016/S1001-6058(16)60757-6
Xin Zhao (赵新), Ji-jian Lian (练继建), Xiao-yan Song (宋小艳)
{"title":"水下冰块稳定性分析","authors":"Xin Zhao (赵新),&nbsp;Ji-jian Lian (练继建),&nbsp;Xiao-yan Song (宋小艳)","doi":"10.1016/S1001-6058(16)60757-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes the critical conditions for a submerged ice block beneath an intact ice cover to become unstable, as a fundamental component of any numerical model to successfully predict the ice jam formation or the ice jam release events. The flume model experimental and numerical simulation methods are both applied to analyze the stability of submerged ice blocks. The flume model experiment is first conducted, and the experimental results indicate that the influencing factors of the stability of a submerged ice block include the relative length, the relative water depth and the relative width. It was shown that the effect of the relative width on the stability of submerged ice blocks was not well studied. Based on the experimental results, <em>k</em> – ɛ the turbulence model is applied to establish a 3-D numerical model for studying the pressure distribution beneath submerged ice blocks. The effects of the relative width on the Venturi pressure and the leading edge pressure are evaluated. Finally, according to the force balance equation and the moment balance equation, this paper proposes a computational formula for the sliding and underturning critical conditions of submerged ice blocks, and the results are in good agreement with the experimental results.</p></div>","PeriodicalId":66131,"journal":{"name":"水动力学研究与进展:英文版","volume":"29 3","pages":"Pages 460-469"},"PeriodicalIF":3.4000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60757-6","citationCount":"2","resultStr":"{\"title\":\"Analyses of the stability of submerged ice blocks\",\"authors\":\"Xin Zhao (赵新),&nbsp;Ji-jian Lian (练继建),&nbsp;Xiao-yan Song (宋小艳)\",\"doi\":\"10.1016/S1001-6058(16)60757-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes the critical conditions for a submerged ice block beneath an intact ice cover to become unstable, as a fundamental component of any numerical model to successfully predict the ice jam formation or the ice jam release events. The flume model experimental and numerical simulation methods are both applied to analyze the stability of submerged ice blocks. The flume model experiment is first conducted, and the experimental results indicate that the influencing factors of the stability of a submerged ice block include the relative length, the relative water depth and the relative width. It was shown that the effect of the relative width on the stability of submerged ice blocks was not well studied. Based on the experimental results, <em>k</em> – ɛ the turbulence model is applied to establish a 3-D numerical model for studying the pressure distribution beneath submerged ice blocks. The effects of the relative width on the Venturi pressure and the leading edge pressure are evaluated. Finally, according to the force balance equation and the moment balance equation, this paper proposes a computational formula for the sliding and underturning critical conditions of submerged ice blocks, and the results are in good agreement with the experimental results.</p></div>\",\"PeriodicalId\":66131,\"journal\":{\"name\":\"水动力学研究与进展:英文版\",\"volume\":\"29 3\",\"pages\":\"Pages 460-469\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60757-6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"水动力学研究与进展:英文版\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001605816607576\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"水动力学研究与进展:英文版","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001605816607576","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了完整冰盖下淹没冰块变得不稳定的临界条件,作为任何成功预测冰塞形成或冰塞释放事件的数值模型的基本组成部分。采用水槽模型、试验和数值模拟两种方法对沉冰体稳定性进行了分析。首先进行了水槽模型实验,实验结果表明,影响沉冰块稳定性的因素包括相对长度、相对水深和相对宽度。研究表明,相对宽度对沉冰体稳定性的影响还没有得到很好的研究。在实验结果的基础上,采用k - ε湍流模型建立了水下冰块下压力分布的三维数值模型。分析了相对宽度对文丘里压力和前缘压力的影响。最后,根据力平衡方程和力矩平衡方程,提出了水下冰块滑动和下翻临界条件的计算公式,计算结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyses of the stability of submerged ice blocks

This paper proposes the critical conditions for a submerged ice block beneath an intact ice cover to become unstable, as a fundamental component of any numerical model to successfully predict the ice jam formation or the ice jam release events. The flume model experimental and numerical simulation methods are both applied to analyze the stability of submerged ice blocks. The flume model experiment is first conducted, and the experimental results indicate that the influencing factors of the stability of a submerged ice block include the relative length, the relative water depth and the relative width. It was shown that the effect of the relative width on the stability of submerged ice blocks was not well studied. Based on the experimental results, k – ɛ the turbulence model is applied to establish a 3-D numerical model for studying the pressure distribution beneath submerged ice blocks. The effects of the relative width on the Venturi pressure and the leading edge pressure are evaluated. Finally, according to the force balance equation and the moment balance equation, this paper proposes a computational formula for the sliding and underturning critical conditions of submerged ice blocks, and the results are in good agreement with the experimental results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
1240
期刊最新文献
The effect of free surface on cloud cavitating flow around a blunt body Bubbly shock propagation as a mechanism of shedding in separated cavitating flows Numerical simulation of a two-dimensional flapping wing in advanced mode Design and experiment of the centrifugal pump impellers with twisted inlet vice blades Novel scaling law for estimating propeller tip vortex cavitation noise from model experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1