Peng Gao, Jiaqi Yin, Mengzhen Wang, Ruyue Wei, Wei Pan*, Na Li* and Bo Tang*,
{"title":"COF-DNA双色纳米探针在活细胞中成像肿瘤相关mrna","authors":"Peng Gao, Jiaqi Yin, Mengzhen Wang, Ruyue Wei, Wei Pan*, Na Li* and Bo Tang*, ","doi":"10.1021/acs.analchem.2c03658","DOIUrl":null,"url":null,"abstract":"<p >Developing probes for the simultaneous detection of multiple tumor-associated mRNAs is beneficial for the precise diagnosis and early therapy of cancer. In this work, we prepared two COF-DNA bicolor probes at room temperature and freezing conditions and evaluated their performances in simultaneous imaging of intracellular tumor-associated mRNAs. By loading dye-labeled survivin- and TK1-mRNA recognition sequences on porphyrin COF NPs, nucleic acid-specific “off–on” nanoprobes were obtained. The nanoprobe prepared by the freezing method exhibits higher ssDNA loading density and better fluorescence quenching efficiency. Moreover, its signal-to-noise ratio is significantly higher than that prepared at room temperature, and the target recognition effect was unaffected. Significantly, the freezing-method-prepared nanoprobe has higher signal intensities in target-overexpressed cells compared to the room-temperature-prepared probe, while their signals in cells with low target expression are similar. Thus, the freezing-method-prepared nanoprobe is a promising tool for improved cancer diagnostic imaging. This work can offer new insights into the exploration of high-performance COF-based nanoprobes for multiple biomarker detection.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"COF-DNA Bicolor Nanoprobes for Imaging Tumor-Associated mRNAs in Living Cells\",\"authors\":\"Peng Gao, Jiaqi Yin, Mengzhen Wang, Ruyue Wei, Wei Pan*, Na Li* and Bo Tang*, \",\"doi\":\"10.1021/acs.analchem.2c03658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing probes for the simultaneous detection of multiple tumor-associated mRNAs is beneficial for the precise diagnosis and early therapy of cancer. In this work, we prepared two COF-DNA bicolor probes at room temperature and freezing conditions and evaluated their performances in simultaneous imaging of intracellular tumor-associated mRNAs. By loading dye-labeled survivin- and TK1-mRNA recognition sequences on porphyrin COF NPs, nucleic acid-specific “off–on” nanoprobes were obtained. The nanoprobe prepared by the freezing method exhibits higher ssDNA loading density and better fluorescence quenching efficiency. Moreover, its signal-to-noise ratio is significantly higher than that prepared at room temperature, and the target recognition effect was unaffected. Significantly, the freezing-method-prepared nanoprobe has higher signal intensities in target-overexpressed cells compared to the room-temperature-prepared probe, while their signals in cells with low target expression are similar. Thus, the freezing-method-prepared nanoprobe is a promising tool for improved cancer diagnostic imaging. This work can offer new insights into the exploration of high-performance COF-based nanoprobes for multiple biomarker detection.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.2c03658\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.2c03658","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
COF-DNA Bicolor Nanoprobes for Imaging Tumor-Associated mRNAs in Living Cells
Developing probes for the simultaneous detection of multiple tumor-associated mRNAs is beneficial for the precise diagnosis and early therapy of cancer. In this work, we prepared two COF-DNA bicolor probes at room temperature and freezing conditions and evaluated their performances in simultaneous imaging of intracellular tumor-associated mRNAs. By loading dye-labeled survivin- and TK1-mRNA recognition sequences on porphyrin COF NPs, nucleic acid-specific “off–on” nanoprobes were obtained. The nanoprobe prepared by the freezing method exhibits higher ssDNA loading density and better fluorescence quenching efficiency. Moreover, its signal-to-noise ratio is significantly higher than that prepared at room temperature, and the target recognition effect was unaffected. Significantly, the freezing-method-prepared nanoprobe has higher signal intensities in target-overexpressed cells compared to the room-temperature-prepared probe, while their signals in cells with low target expression are similar. Thus, the freezing-method-prepared nanoprobe is a promising tool for improved cancer diagnostic imaging. This work can offer new insights into the exploration of high-performance COF-based nanoprobes for multiple biomarker detection.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.