重温神经元组织染色试剂。

Annals of Eye Science Pub Date : 2022-03-01 Epub Date: 2022-03-15 DOI:10.21037/aes-21-31
Alexandra Rosario, Ashley Howell, Sanjoy K Bhattacharya
{"title":"重温神经元组织染色试剂。","authors":"Alexandra Rosario, Ashley Howell, Sanjoy K Bhattacharya","doi":"10.21037/aes-21-31","DOIUrl":null,"url":null,"abstract":"<p><p>In the early days of deciphering the injured neuronal tissues led to the realization that contrast is necessary to discern the parts of the recovering tissues from the damaged ones. Early attempts relied on available (and often naturally occurring) staining substances. Incidentally, the active ingredients of most of them were small molecules. With the advent of time, the knowledge of chemistry helped identify compounds and conditions for staining. The staining reagents were even found to enhance the visibility of the organelles. Silver impregnation identification of Golgi bodies was discovered in owl optic nerve. Staining reagents since the late 1800s were widely used across all disciplines and for nerve tissue and became a key contributor to advancement in nerve-related research. The use of these reagents provided insight into the organization of the neuronal tissues and helped distinguish nerve degeneration from regeneration. The neuronal staining reagents have played a fundamental role in the clinical research facilitating the identification of biological mechanisms underlying eye and neuropsychiatric diseases. We found a lack of systematic description of all staining reagents, whether they had been used historically or currently used. There is a lack of readily available information for optimal staining of different neuronal tissues for a given purpose. We present here a grouping of the reagents based on their target location: (I) the central nervous system (CNS), (II) the peripheral nervous system (PNS), or (III) both. The biochemical reactions of most of the staining reagents is based on acidic or basic pH and specific reaction partners such as organelle or biomolecules that exists within the given tissue type. We present here a summary of the chemical composition, optimal staining condition, use for given neuronal tissue and, where possible, historic usage. Several biomolecules such as lipids and metabolites lack specific antibodies. Despite being non-specific the reagents enhance contrast and provide corroboration about the microenvironment. In future, these reagents in combination with emerging techniques such as imaging mass spectrometry and kinetic histochemistry will validate or expand our understanding of localization of molecules within tissues or cells that are important for ophthalmology and vision science.</p>","PeriodicalId":8400,"journal":{"name":"Annals of Eye Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/00/c8/nihms-1794795.PMC9518810.pdf","citationCount":"0","resultStr":"{\"title\":\"A revisit to staining reagents for neuronal tissues.\",\"authors\":\"Alexandra Rosario, Ashley Howell, Sanjoy K Bhattacharya\",\"doi\":\"10.21037/aes-21-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the early days of deciphering the injured neuronal tissues led to the realization that contrast is necessary to discern the parts of the recovering tissues from the damaged ones. Early attempts relied on available (and often naturally occurring) staining substances. Incidentally, the active ingredients of most of them were small molecules. With the advent of time, the knowledge of chemistry helped identify compounds and conditions for staining. The staining reagents were even found to enhance the visibility of the organelles. Silver impregnation identification of Golgi bodies was discovered in owl optic nerve. Staining reagents since the late 1800s were widely used across all disciplines and for nerve tissue and became a key contributor to advancement in nerve-related research. The use of these reagents provided insight into the organization of the neuronal tissues and helped distinguish nerve degeneration from regeneration. The neuronal staining reagents have played a fundamental role in the clinical research facilitating the identification of biological mechanisms underlying eye and neuropsychiatric diseases. We found a lack of systematic description of all staining reagents, whether they had been used historically or currently used. There is a lack of readily available information for optimal staining of different neuronal tissues for a given purpose. We present here a grouping of the reagents based on their target location: (I) the central nervous system (CNS), (II) the peripheral nervous system (PNS), or (III) both. The biochemical reactions of most of the staining reagents is based on acidic or basic pH and specific reaction partners such as organelle or biomolecules that exists within the given tissue type. We present here a summary of the chemical composition, optimal staining condition, use for given neuronal tissue and, where possible, historic usage. Several biomolecules such as lipids and metabolites lack specific antibodies. Despite being non-specific the reagents enhance contrast and provide corroboration about the microenvironment. In future, these reagents in combination with emerging techniques such as imaging mass spectrometry and kinetic histochemistry will validate or expand our understanding of localization of molecules within tissues or cells that are important for ophthalmology and vision science.</p>\",\"PeriodicalId\":8400,\"journal\":{\"name\":\"Annals of Eye Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/00/c8/nihms-1794795.PMC9518810.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Eye Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/aes-21-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Eye Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/aes-21-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在早期破译受损神经元组织的过程中,人们意识到必须使用对比度来分辨恢复组织和受损组织的不同部分。早期的尝试依赖于现有的(通常是天然存在的)染色物质。顺便提一下,这些物质的有效成分大多是小分子。随着时间的推移,化学知识帮助确定了染色的化合物和条件。染色试剂甚至还能提高细胞器的可见度。在猫头鹰视神经中发现了浸银鉴定高尔基体的方法。自 19 世纪末以来,染色试剂被广泛应用于各个学科和神经组织,成为推动神经相关研究的重要因素。这些试剂的使用有助于深入了解神经元组织的组织结构,并帮助区分神经变性和再生。神经元染色试剂在临床研究中发挥了基础性作用,有助于确定眼部和神经精神疾病的生物机制。我们发现缺乏对所有染色试剂的系统描述,无论这些试剂是历史上使用过的还是目前正在使用的。对于不同神经元组织的特定用途的最佳染色,也缺乏现成的信息。我们在此根据试剂的目标位置对其进行分组:(I) 中枢神经系统 (CNS),(II) 周围神经系统 (PNS),或 (III) 两者。大多数染色试剂的生化反应基于酸性或碱性 pH 值以及特定的反应伙伴,如特定组织类型中存在的细胞器或生物大分子。我们在此总结了染色试剂的化学成分、最佳染色条件、在特定神经元组织中的使用情况,并尽可能介绍其历史使用情况。脂质和代谢物等几种生物大分子缺乏特异性抗体。尽管这些试剂是非特异性的,但它们能增强对比度,为微环境提供佐证。未来,这些试剂与成像质谱和动力学组织化学等新兴技术相结合,将验证或扩展我们对组织或细胞内分子定位的理解,这对眼科学和视觉科学非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A revisit to staining reagents for neuronal tissues.

In the early days of deciphering the injured neuronal tissues led to the realization that contrast is necessary to discern the parts of the recovering tissues from the damaged ones. Early attempts relied on available (and often naturally occurring) staining substances. Incidentally, the active ingredients of most of them were small molecules. With the advent of time, the knowledge of chemistry helped identify compounds and conditions for staining. The staining reagents were even found to enhance the visibility of the organelles. Silver impregnation identification of Golgi bodies was discovered in owl optic nerve. Staining reagents since the late 1800s were widely used across all disciplines and for nerve tissue and became a key contributor to advancement in nerve-related research. The use of these reagents provided insight into the organization of the neuronal tissues and helped distinguish nerve degeneration from regeneration. The neuronal staining reagents have played a fundamental role in the clinical research facilitating the identification of biological mechanisms underlying eye and neuropsychiatric diseases. We found a lack of systematic description of all staining reagents, whether they had been used historically or currently used. There is a lack of readily available information for optimal staining of different neuronal tissues for a given purpose. We present here a grouping of the reagents based on their target location: (I) the central nervous system (CNS), (II) the peripheral nervous system (PNS), or (III) both. The biochemical reactions of most of the staining reagents is based on acidic or basic pH and specific reaction partners such as organelle or biomolecules that exists within the given tissue type. We present here a summary of the chemical composition, optimal staining condition, use for given neuronal tissue and, where possible, historic usage. Several biomolecules such as lipids and metabolites lack specific antibodies. Despite being non-specific the reagents enhance contrast and provide corroboration about the microenvironment. In future, these reagents in combination with emerging techniques such as imaging mass spectrometry and kinetic histochemistry will validate or expand our understanding of localization of molecules within tissues or cells that are important for ophthalmology and vision science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊最新文献
Designing a medical ethics curriculum in ophthalmology Medical and surgical approach to ocular surface reconstruction Improving the training abilities of ophthalmic educators: the Ophthalmology Foundation’s initiatives Interactivity software tools for teaching in ophthalmology Review: update on performance assessment and monitoring systems for ophthalmologists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1