Mario Cioce, Daniela Rutigliano, Annamaria Puglielli, Vito Michele Fazio
{"title":"丁素诱导的mir -186-5p依赖性TWIST1调控影响恶性胸膜间皮瘤细胞对顺铂的耐药性和生物能量学。","authors":"Mario Cioce, Daniela Rutigliano, Annamaria Puglielli, Vito Michele Fazio","doi":"10.20517/cdr.2022.56","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Malignant pleural mesothelioma is a chemoresistant tumor, and biphasic and sarcomatoid histologies portend the worst prognosis for malignant pleural mesothelioma (MPM) patients. We obtained the microRNA expression profile of three biphasic-sarcomatoid MPM cell lines to identify commonly expressed microRNAs and evaluate the effect of butein, a chemo-sensitizing compound, on this microRNA subset. <b>Methods:</b> Nanostring-based microRNA profiling and analysis through the ROSALIND platform were employed to identify the commonly modulated microRNAs and their targets. MicroRNA-mimic transfection, Luciferase assay, and Western blotting were employed to show specific perturbation of TWIST1 levels by miR-186-5p. Sphere-forming assays, invasion assay, and metabolic profiling were used to assess the biological consequences of the butein-instigated miR-186-5p-mediated perturbation of TWIST1 levels. TGCA analysis was used to search for the correlation between TWIST1 and miR-186-5p levels in biphasic and epithelioid MPM specimens. <b>Results:</b> We identified a set of perturbed microRNAs, common to three biphasic/sarcomatoid MPM cell lines, after butein treatment. When focusing on miR-186-5p, we unraveled a butein-ignited and miR-186-5p-mediated modulation of TWIST1 levels which affected the 3D anchorage-independent growth, cisplatin resistance, invasion, and bioenergetics of the MPM cell lines tested. We showed that miR-186-5p and TWIST1 levels are anti-correlated in biphasic MPM specimens from TCGA. <b>Conclusion:</b> We unraveled a novel mechanism of action of butein, which attenuated the pro-tumorigenic features of MPM at least through a miR-186-5p-TWIST1 axis. We suggest that those activities converge into the chemo-sensitizing effect of this compound and may be of translational relevance.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511809/pdf/","citationCount":"3","resultStr":"{\"title\":\"Butein-instigated miR-186-5p-dependent modulation of TWIST1 affects resistance to cisplatin and bioenergetics of Malignant Pleural Mesothelioma cells.\",\"authors\":\"Mario Cioce, Daniela Rutigliano, Annamaria Puglielli, Vito Michele Fazio\",\"doi\":\"10.20517/cdr.2022.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Malignant pleural mesothelioma is a chemoresistant tumor, and biphasic and sarcomatoid histologies portend the worst prognosis for malignant pleural mesothelioma (MPM) patients. We obtained the microRNA expression profile of three biphasic-sarcomatoid MPM cell lines to identify commonly expressed microRNAs and evaluate the effect of butein, a chemo-sensitizing compound, on this microRNA subset. <b>Methods:</b> Nanostring-based microRNA profiling and analysis through the ROSALIND platform were employed to identify the commonly modulated microRNAs and their targets. MicroRNA-mimic transfection, Luciferase assay, and Western blotting were employed to show specific perturbation of TWIST1 levels by miR-186-5p. Sphere-forming assays, invasion assay, and metabolic profiling were used to assess the biological consequences of the butein-instigated miR-186-5p-mediated perturbation of TWIST1 levels. TGCA analysis was used to search for the correlation between TWIST1 and miR-186-5p levels in biphasic and epithelioid MPM specimens. <b>Results:</b> We identified a set of perturbed microRNAs, common to three biphasic/sarcomatoid MPM cell lines, after butein treatment. When focusing on miR-186-5p, we unraveled a butein-ignited and miR-186-5p-mediated modulation of TWIST1 levels which affected the 3D anchorage-independent growth, cisplatin resistance, invasion, and bioenergetics of the MPM cell lines tested. We showed that miR-186-5p and TWIST1 levels are anti-correlated in biphasic MPM specimens from TCGA. <b>Conclusion:</b> We unraveled a novel mechanism of action of butein, which attenuated the pro-tumorigenic features of MPM at least through a miR-186-5p-TWIST1 axis. We suggest that those activities converge into the chemo-sensitizing effect of this compound and may be of translational relevance.</p>\",\"PeriodicalId\":70759,\"journal\":{\"name\":\"癌症耐药(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511809/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"癌症耐药(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/cdr.2022.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/cdr.2022.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Butein-instigated miR-186-5p-dependent modulation of TWIST1 affects resistance to cisplatin and bioenergetics of Malignant Pleural Mesothelioma cells.
Aim: Malignant pleural mesothelioma is a chemoresistant tumor, and biphasic and sarcomatoid histologies portend the worst prognosis for malignant pleural mesothelioma (MPM) patients. We obtained the microRNA expression profile of three biphasic-sarcomatoid MPM cell lines to identify commonly expressed microRNAs and evaluate the effect of butein, a chemo-sensitizing compound, on this microRNA subset. Methods: Nanostring-based microRNA profiling and analysis through the ROSALIND platform were employed to identify the commonly modulated microRNAs and their targets. MicroRNA-mimic transfection, Luciferase assay, and Western blotting were employed to show specific perturbation of TWIST1 levels by miR-186-5p. Sphere-forming assays, invasion assay, and metabolic profiling were used to assess the biological consequences of the butein-instigated miR-186-5p-mediated perturbation of TWIST1 levels. TGCA analysis was used to search for the correlation between TWIST1 and miR-186-5p levels in biphasic and epithelioid MPM specimens. Results: We identified a set of perturbed microRNAs, common to three biphasic/sarcomatoid MPM cell lines, after butein treatment. When focusing on miR-186-5p, we unraveled a butein-ignited and miR-186-5p-mediated modulation of TWIST1 levels which affected the 3D anchorage-independent growth, cisplatin resistance, invasion, and bioenergetics of the MPM cell lines tested. We showed that miR-186-5p and TWIST1 levels are anti-correlated in biphasic MPM specimens from TCGA. Conclusion: We unraveled a novel mechanism of action of butein, which attenuated the pro-tumorigenic features of MPM at least through a miR-186-5p-TWIST1 axis. We suggest that those activities converge into the chemo-sensitizing effect of this compound and may be of translational relevance.