{"title":"Wnt5a/Ror2通过激活PKC促进血管平滑肌细胞增殖。","authors":"Yaning Shi, Hongfang Li, Jia Gu, Yongzhen Gong, Xuejiao Xie, Duanfang Liao, Li Qin","doi":"10.5603/FHC.a2022.0026","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Abnormal proliferation of vascular smooth muscle cells (VSMCs) can cause various vascular diseases, such as atherosclerosis, restenosis, and pulmonary hypertension. However, the effect and underlying mechanism of Wnt5a on the proliferation of VSMCs remain unclear. Our study aimed to investigate whether Wnt5a/Ror2 promotes vascular smooth muscle cell proliferation via activating protein kinase C (PKC), thereby effectively alleviating vascular proliferative diseases.</p><p><strong>Material and methods: </strong>The proliferation of HA-VSMC cell line was evaluated by CCK-8, EdU, and Plate clone formation assays. The Wnt5a gene knockdown and overexpression were carried out by standard methods. The interaction between Wnt5a and Ror2 was explored by co-immunoprecipitation. Western blotting and immunofluorescence were used to determine the expression levels of key proteins in VSMCs.</p><p><strong>Results: </strong>The present study found that the expression of Wnt5a protein increased significantly in the proliferation of VSMCs stimulated by 10% serum in a time-dependent manner. Furthermore, the proliferative rate of VSMCs overexpressing Wnt5a was dramatically accelerated, whereas Wnt5a knockdown using siWnt5a reversed thisproliferative effect. Wnt5a up-regulated the expression of receptor tyrosine kinase-like orphan receptor 2 (Ror2) by binding to it. Further studies indicated that Wnt5a induces the PKC expression in VSMCs and knockdown of Wnt5a or Ror2 could inhibit PKC phosphorylation.</p><p><strong>Conclusions: </strong>Wnt5a could effectively promote the proliferation of VSMCs, which might be related to the binding of Wnt5a and Ror2 to activate PKC.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wnt5a/Ror2 promotes vascular smooth muscle cells proliferation via activating PKC.\",\"authors\":\"Yaning Shi, Hongfang Li, Jia Gu, Yongzhen Gong, Xuejiao Xie, Duanfang Liao, Li Qin\",\"doi\":\"10.5603/FHC.a2022.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Abnormal proliferation of vascular smooth muscle cells (VSMCs) can cause various vascular diseases, such as atherosclerosis, restenosis, and pulmonary hypertension. However, the effect and underlying mechanism of Wnt5a on the proliferation of VSMCs remain unclear. Our study aimed to investigate whether Wnt5a/Ror2 promotes vascular smooth muscle cell proliferation via activating protein kinase C (PKC), thereby effectively alleviating vascular proliferative diseases.</p><p><strong>Material and methods: </strong>The proliferation of HA-VSMC cell line was evaluated by CCK-8, EdU, and Plate clone formation assays. The Wnt5a gene knockdown and overexpression were carried out by standard methods. The interaction between Wnt5a and Ror2 was explored by co-immunoprecipitation. Western blotting and immunofluorescence were used to determine the expression levels of key proteins in VSMCs.</p><p><strong>Results: </strong>The present study found that the expression of Wnt5a protein increased significantly in the proliferation of VSMCs stimulated by 10% serum in a time-dependent manner. Furthermore, the proliferative rate of VSMCs overexpressing Wnt5a was dramatically accelerated, whereas Wnt5a knockdown using siWnt5a reversed thisproliferative effect. Wnt5a up-regulated the expression of receptor tyrosine kinase-like orphan receptor 2 (Ror2) by binding to it. Further studies indicated that Wnt5a induces the PKC expression in VSMCs and knockdown of Wnt5a or Ror2 could inhibit PKC phosphorylation.</p><p><strong>Conclusions: </strong>Wnt5a could effectively promote the proliferation of VSMCs, which might be related to the binding of Wnt5a and Ror2 to activate PKC.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5603/FHC.a2022.0026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/FHC.a2022.0026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Wnt5a/Ror2 promotes vascular smooth muscle cells proliferation via activating PKC.
Introduction: Abnormal proliferation of vascular smooth muscle cells (VSMCs) can cause various vascular diseases, such as atherosclerosis, restenosis, and pulmonary hypertension. However, the effect and underlying mechanism of Wnt5a on the proliferation of VSMCs remain unclear. Our study aimed to investigate whether Wnt5a/Ror2 promotes vascular smooth muscle cell proliferation via activating protein kinase C (PKC), thereby effectively alleviating vascular proliferative diseases.
Material and methods: The proliferation of HA-VSMC cell line was evaluated by CCK-8, EdU, and Plate clone formation assays. The Wnt5a gene knockdown and overexpression were carried out by standard methods. The interaction between Wnt5a and Ror2 was explored by co-immunoprecipitation. Western blotting and immunofluorescence were used to determine the expression levels of key proteins in VSMCs.
Results: The present study found that the expression of Wnt5a protein increased significantly in the proliferation of VSMCs stimulated by 10% serum in a time-dependent manner. Furthermore, the proliferative rate of VSMCs overexpressing Wnt5a was dramatically accelerated, whereas Wnt5a knockdown using siWnt5a reversed thisproliferative effect. Wnt5a up-regulated the expression of receptor tyrosine kinase-like orphan receptor 2 (Ror2) by binding to it. Further studies indicated that Wnt5a induces the PKC expression in VSMCs and knockdown of Wnt5a or Ror2 could inhibit PKC phosphorylation.
Conclusions: Wnt5a could effectively promote the proliferation of VSMCs, which might be related to the binding of Wnt5a and Ror2 to activate PKC.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.