{"title":"纤毛再生需要来自纤毛基部的RNA剪接因子。","authors":"Kaiming Xu, Guangshuo Ou","doi":"10.1186/s13619-022-00130-x","DOIUrl":null,"url":null,"abstract":"<p><p>Cilia are microtubule-based organelles projected from most eukaryotic cell surfaces performing cell motility and signaling. Several previously recognized non-ciliary proteins play crucial roles in cilium formation and function. Here, we provide additional evidence that the Caenorhabditis elegans RNA splicing factor PRP-8/PRPF8 regulates ciliogenesis and regeneration from the ciliary base. Live imaging of GFP knock-in animals reveals that the endogenous PRP-8 localizes in the nuclei and the ciliary base. A weak loss-of-function allele of prp-8 affects ciliary structure but with little impact on RNA splicing. Conditional degradation of PRP-8 within ciliated sensory neurons showed its direct and specific roles in cilium formation. Notably, the penetrance of ciliary defects correlates with the reduction of PRP-8 at the ciliary base but not nuclei, and sensory neurons regenerated cilia accompanying PRP-8 recovery from the ciliary base rather than the nuclei. We suggest that PRP-8 at the ciliary base contributes to cilium formation and regeneration.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525525/pdf/","citationCount":"1","resultStr":"{\"title\":\"Cilia regeneration requires an RNA splicing factor from the ciliary base.\",\"authors\":\"Kaiming Xu, Guangshuo Ou\",\"doi\":\"10.1186/s13619-022-00130-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cilia are microtubule-based organelles projected from most eukaryotic cell surfaces performing cell motility and signaling. Several previously recognized non-ciliary proteins play crucial roles in cilium formation and function. Here, we provide additional evidence that the Caenorhabditis elegans RNA splicing factor PRP-8/PRPF8 regulates ciliogenesis and regeneration from the ciliary base. Live imaging of GFP knock-in animals reveals that the endogenous PRP-8 localizes in the nuclei and the ciliary base. A weak loss-of-function allele of prp-8 affects ciliary structure but with little impact on RNA splicing. Conditional degradation of PRP-8 within ciliated sensory neurons showed its direct and specific roles in cilium formation. Notably, the penetrance of ciliary defects correlates with the reduction of PRP-8 at the ciliary base but not nuclei, and sensory neurons regenerated cilia accompanying PRP-8 recovery from the ciliary base rather than the nuclei. We suggest that PRP-8 at the ciliary base contributes to cilium formation and regeneration.</p>\",\"PeriodicalId\":9811,\"journal\":{\"name\":\"Cell Regeneration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525525/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Regeneration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13619-022-00130-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-022-00130-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Cilia regeneration requires an RNA splicing factor from the ciliary base.
Cilia are microtubule-based organelles projected from most eukaryotic cell surfaces performing cell motility and signaling. Several previously recognized non-ciliary proteins play crucial roles in cilium formation and function. Here, we provide additional evidence that the Caenorhabditis elegans RNA splicing factor PRP-8/PRPF8 regulates ciliogenesis and regeneration from the ciliary base. Live imaging of GFP knock-in animals reveals that the endogenous PRP-8 localizes in the nuclei and the ciliary base. A weak loss-of-function allele of prp-8 affects ciliary structure but with little impact on RNA splicing. Conditional degradation of PRP-8 within ciliated sensory neurons showed its direct and specific roles in cilium formation. Notably, the penetrance of ciliary defects correlates with the reduction of PRP-8 at the ciliary base but not nuclei, and sensory neurons regenerated cilia accompanying PRP-8 recovery from the ciliary base rather than the nuclei. We suggest that PRP-8 at the ciliary base contributes to cilium formation and regeneration.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine