{"title":"离散延迟随机宿主内动力学SARS-CoV-2感染建模。","authors":"I M Elbaz, M A Sohaly, H El-Metwally","doi":"10.1007/s12064-022-00379-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a new mathematical model that describes the dynamics of the within-host COVID-19 epidemic is formulated. We show the stochastic dynamics of Target-Latent-Infected-Virus free within the human body with discrete delay and noise. Positivity and uniqueness of the solutions are established. Our study shows the extinction and persistence of the disease inside the human body through the stability analysis of the disease-free equilibrium [Formula: see text] and the endemic equilibrium [Formula: see text], respectively. Moreover, we show the impact of delay tactics and noise on the extinction of the disease. The most interesting result is even if the deterministic system is inevitably pandemic at a specific point, extinction will become possible in the stochastic version of our model.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527740/pdf/","citationCount":"5","resultStr":"{\"title\":\"Modeling the stochastic within-host dynamics SARS-CoV-2 infection with discrete delay.\",\"authors\":\"I M Elbaz, M A Sohaly, H El-Metwally\",\"doi\":\"10.1007/s12064-022-00379-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a new mathematical model that describes the dynamics of the within-host COVID-19 epidemic is formulated. We show the stochastic dynamics of Target-Latent-Infected-Virus free within the human body with discrete delay and noise. Positivity and uniqueness of the solutions are established. Our study shows the extinction and persistence of the disease inside the human body through the stability analysis of the disease-free equilibrium [Formula: see text] and the endemic equilibrium [Formula: see text], respectively. Moreover, we show the impact of delay tactics and noise on the extinction of the disease. The most interesting result is even if the deterministic system is inevitably pandemic at a specific point, extinction will become possible in the stochastic version of our model.</p>\",\"PeriodicalId\":54428,\"journal\":{\"name\":\"Theory in Biosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527740/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory in Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12064-022-00379-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-022-00379-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Modeling the stochastic within-host dynamics SARS-CoV-2 infection with discrete delay.
In this paper, a new mathematical model that describes the dynamics of the within-host COVID-19 epidemic is formulated. We show the stochastic dynamics of Target-Latent-Infected-Virus free within the human body with discrete delay and noise. Positivity and uniqueness of the solutions are established. Our study shows the extinction and persistence of the disease inside the human body through the stability analysis of the disease-free equilibrium [Formula: see text] and the endemic equilibrium [Formula: see text], respectively. Moreover, we show the impact of delay tactics and noise on the extinction of the disease. The most interesting result is even if the deterministic system is inevitably pandemic at a specific point, extinction will become possible in the stochastic version of our model.
期刊介绍:
Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are:
Artificial Life;
Bioinformatics with a focus on novel methods, phenomena, and interpretations;
Bioinspired Modeling;
Complexity, Robustness, and Resilience;
Embodied Cognition;
Evolutionary Biology;
Evo-Devo;
Game Theoretic Modeling;
Genetics;
History of Biology;
Language Evolution;
Mathematical Biology;
Origin of Life;
Philosophy of Biology;
Population Biology;
Systems Biology;
Theoretical Ecology;
Theoretical Molecular Biology;
Theoretical Neuroscience & Cognition.