基于光学相干断层成像的深度卷积神经网络眼部疾病检测。

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2022-06-21 eCollection Date: 2022-12-01 DOI:10.1007/s13755-022-00182-y
Puneet, Rakesh Kumar, Meenu Gupta
{"title":"基于光学相干断层成像的深度卷积神经网络眼部疾病检测。","authors":"Puneet, Rakesh Kumar, Meenu Gupta","doi":"10.1007/s13755-022-00182-y","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past few decades, health care industries and medical practitioners faced a lot of obstacles to diagnosing medical-related problems due to inadequate technology and availability of equipment. In the present era, computer science technologies such as IoT, Cloud Computing, Artificial Intelligence and its allied techniques, etc. play a crucial role in the identification of medical diseases, especially in the domain of Ophthalmology. Despite this, ophthalmologists have to perform the various disease diagnosis task manually which is time-consuming and the chances of error are also very high because some of the abnormalities of eye diseases possess the same symptoms. Furthermore, multiple autonomous systems also exist to categorize the diseases but their prediction rate does not accomplish state-of-art accuracy. In the proposed approach by implementing the concept of Attention, Transfer Learning with the Deep Convolution Neural Network, the model accomplished an accuracy of 97.79% and 95.6% on the training and testing data respectively. This autonomous model efficiently classifies the various oscular disorders namely Choroidal Neovascularization, Diabetic Macular Edema, Drusen from the Optical Coherence Tomography images. It may provide a realistic solution to the healthcare sector to bring down the ophthalmologist burden in the screening of Diabetic Retinopathy.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213631/pdf/","citationCount":"10","resultStr":"{\"title\":\"Optical coherence tomography image based eye disease detection using deep convolutional neural network.\",\"authors\":\"Puneet, Rakesh Kumar, Meenu Gupta\",\"doi\":\"10.1007/s13755-022-00182-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past few decades, health care industries and medical practitioners faced a lot of obstacles to diagnosing medical-related problems due to inadequate technology and availability of equipment. In the present era, computer science technologies such as IoT, Cloud Computing, Artificial Intelligence and its allied techniques, etc. play a crucial role in the identification of medical diseases, especially in the domain of Ophthalmology. Despite this, ophthalmologists have to perform the various disease diagnosis task manually which is time-consuming and the chances of error are also very high because some of the abnormalities of eye diseases possess the same symptoms. Furthermore, multiple autonomous systems also exist to categorize the diseases but their prediction rate does not accomplish state-of-art accuracy. In the proposed approach by implementing the concept of Attention, Transfer Learning with the Deep Convolution Neural Network, the model accomplished an accuracy of 97.79% and 95.6% on the training and testing data respectively. This autonomous model efficiently classifies the various oscular disorders namely Choroidal Neovascularization, Diabetic Macular Edema, Drusen from the Optical Coherence Tomography images. It may provide a realistic solution to the healthcare sector to bring down the ophthalmologist burden in the screening of Diabetic Retinopathy.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213631/pdf/\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-022-00182-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00182-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 10

摘要

在过去的几十年里,由于技术和设备的不足,医疗保健行业和医疗从业者在诊断医疗相关问题方面面临许多障碍。在当今时代,物联网、云计算、人工智能及其相关技术等计算机科学技术在医学疾病的识别中发挥着至关重要的作用,尤其是在眼科领域。尽管如此,眼科医生必须手动执行各种疾病诊断任务,这不仅耗时,而且由于一些眼病的异常具有相同的症状,因此出错的可能性也很高。此外,也存在多个自主系统对疾病进行分类,但其预测率没有达到最先进的准确性。该方法将注意力迁移学习的概念与深度卷积神经网络相结合,模型在训练数据和测试数据上的准确率分别达到97.79%和95.6%。该自主模型有效地对光学相干断层扫描图像中的脉络膜新生血管、糖尿病性黄斑水肿、Drusen等各种眼部疾病进行了分类。这可能为医疗保健部门提供一个现实的解决方案,以减轻眼科医生在糖尿病视网膜病变筛查中的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical coherence tomography image based eye disease detection using deep convolutional neural network.

Over the past few decades, health care industries and medical practitioners faced a lot of obstacles to diagnosing medical-related problems due to inadequate technology and availability of equipment. In the present era, computer science technologies such as IoT, Cloud Computing, Artificial Intelligence and its allied techniques, etc. play a crucial role in the identification of medical diseases, especially in the domain of Ophthalmology. Despite this, ophthalmologists have to perform the various disease diagnosis task manually which is time-consuming and the chances of error are also very high because some of the abnormalities of eye diseases possess the same symptoms. Furthermore, multiple autonomous systems also exist to categorize the diseases but their prediction rate does not accomplish state-of-art accuracy. In the proposed approach by implementing the concept of Attention, Transfer Learning with the Deep Convolution Neural Network, the model accomplished an accuracy of 97.79% and 95.6% on the training and testing data respectively. This autonomous model efficiently classifies the various oscular disorders namely Choroidal Neovascularization, Diabetic Macular Edema, Drusen from the Optical Coherence Tomography images. It may provide a realistic solution to the healthcare sector to bring down the ophthalmologist burden in the screening of Diabetic Retinopathy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. Wilms' tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Toll-like receptor agonists as cancer vaccine adjuvants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1