Mehak Gupta, Thao-Ly T Phan, H Timothy Bunnell, Rahmatollah Beheshti
{"title":"用电子病历数据预测肥胖:一种具有可解释元素的深度学习方法。","authors":"Mehak Gupta, Thao-Ly T Phan, H Timothy Bunnell, Rahmatollah Beheshti","doi":"10.1145/3506719","DOIUrl":null,"url":null,"abstract":"<p><p>Childhood obesity is a major public health challenge. Early prediction and identification of the children at an elevated risk of developing childhood obesity may help in engaging earlier and more effective interventions to prevent and manage obesity. Most existing predictive tools for childhood obesity primarily rely on traditional regression-type methods using only a few hand-picked features and without exploiting longitudinal patterns of children's data. Deep learning methods allow the use of high-dimensional longitudinal datasets. In this paper, we present a deep learning model designed for predicting future obesity patterns from generally available items on children's medical history. To do this, we use a large unaugmented electronic health records dataset from a large pediatric health system in the US. We adopt a general LSTM network architecture and train our proposed model using both static and dynamic EHR data. To add interpretability, we have additionally included an attention layer to calculate the attention scores for the timestamps and rank features of each timestamp. Our model is used to predict obesity for ages between 3-20 years using the data from 1-3 years in advance. We compare the performance of our LSTM model with a series of existing studies in the literature and show it outperforms their performance in most age ranges.</p>","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221869/pdf/nihms-1811884.pdf","citationCount":"35","resultStr":"{\"title\":\"Obesity Prediction with EHR Data: A deep learning approach with interpretable elements.\",\"authors\":\"Mehak Gupta, Thao-Ly T Phan, H Timothy Bunnell, Rahmatollah Beheshti\",\"doi\":\"10.1145/3506719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Childhood obesity is a major public health challenge. Early prediction and identification of the children at an elevated risk of developing childhood obesity may help in engaging earlier and more effective interventions to prevent and manage obesity. Most existing predictive tools for childhood obesity primarily rely on traditional regression-type methods using only a few hand-picked features and without exploiting longitudinal patterns of children's data. Deep learning methods allow the use of high-dimensional longitudinal datasets. In this paper, we present a deep learning model designed for predicting future obesity patterns from generally available items on children's medical history. To do this, we use a large unaugmented electronic health records dataset from a large pediatric health system in the US. We adopt a general LSTM network architecture and train our proposed model using both static and dynamic EHR data. To add interpretability, we have additionally included an attention layer to calculate the attention scores for the timestamps and rank features of each timestamp. Our model is used to predict obesity for ages between 3-20 years using the data from 1-3 years in advance. We compare the performance of our LSTM model with a series of existing studies in the literature and show it outperforms their performance in most age ranges.</p>\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221869/pdf/nihms-1811884.pdf\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3506719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Obesity Prediction with EHR Data: A deep learning approach with interpretable elements.
Childhood obesity is a major public health challenge. Early prediction and identification of the children at an elevated risk of developing childhood obesity may help in engaging earlier and more effective interventions to prevent and manage obesity. Most existing predictive tools for childhood obesity primarily rely on traditional regression-type methods using only a few hand-picked features and without exploiting longitudinal patterns of children's data. Deep learning methods allow the use of high-dimensional longitudinal datasets. In this paper, we present a deep learning model designed for predicting future obesity patterns from generally available items on children's medical history. To do this, we use a large unaugmented electronic health records dataset from a large pediatric health system in the US. We adopt a general LSTM network architecture and train our proposed model using both static and dynamic EHR data. To add interpretability, we have additionally included an attention layer to calculate the attention scores for the timestamps and rank features of each timestamp. Our model is used to predict obesity for ages between 3-20 years using the data from 1-3 years in advance. We compare the performance of our LSTM model with a series of existing studies in the literature and show it outperforms their performance in most age ranges.