{"title":"枯草芽孢杆菌模块化代谢工程系统中木质纤维素生物质水解物生产乙酰素。","authors":"Qiang Wang, Xian Zhang, Kexin Ren, Rumeng Han, Ruiqi Lu, Teng Bao, Xuewei Pan, Taowei Yang, Meijuan Xu, Zhiming Rao","doi":"10.1186/s13068-022-02185-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acetoin (AC) is a vital platform chemical widely used in food, pharmaceutical and chemical industries. With increasing concern over non-renewable resources and environmental issues, using low-cost biomass for acetoin production by microbial fermentation is undoubtedly a promising strategy.</p><p><strong>Results: </strong>This work reduces the disadvantages of Bacillus subtilis during fermentation by regulating genes involved in spore formation and autolysis. Then, optimizing intracellular redox homeostasis through Rex protein mitigated the detrimental effects of NADH produced by the glycolytic metabolic pathway on the process of AC production. Subsequently, multiple pathways that compete with AC production are blocked to optimize carbon flux allocation. Finally, the population cell density-induced promoter was used to enhance the AC synthesis pathway. Fermentation was carried out in a 5-L bioreactor using bagasse lignocellulosic hydrolysate, resulting in a final titer of 64.3 g/L, which was 89.5% of the theoretical yield.</p><p><strong>Conclusions: </strong>The recombinant strain BSMAY-4-P<sub>srfA</sub> provides an economical and efficient strategy for large-scale industrial production of acetoin.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"87"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400278/pdf/","citationCount":"5","resultStr":"{\"title\":\"Acetoin production from lignocellulosic biomass hydrolysates with a modular metabolic engineering system in Bacillus subtilis.\",\"authors\":\"Qiang Wang, Xian Zhang, Kexin Ren, Rumeng Han, Ruiqi Lu, Teng Bao, Xuewei Pan, Taowei Yang, Meijuan Xu, Zhiming Rao\",\"doi\":\"10.1186/s13068-022-02185-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acetoin (AC) is a vital platform chemical widely used in food, pharmaceutical and chemical industries. With increasing concern over non-renewable resources and environmental issues, using low-cost biomass for acetoin production by microbial fermentation is undoubtedly a promising strategy.</p><p><strong>Results: </strong>This work reduces the disadvantages of Bacillus subtilis during fermentation by regulating genes involved in spore formation and autolysis. Then, optimizing intracellular redox homeostasis through Rex protein mitigated the detrimental effects of NADH produced by the glycolytic metabolic pathway on the process of AC production. Subsequently, multiple pathways that compete with AC production are blocked to optimize carbon flux allocation. Finally, the population cell density-induced promoter was used to enhance the AC synthesis pathway. Fermentation was carried out in a 5-L bioreactor using bagasse lignocellulosic hydrolysate, resulting in a final titer of 64.3 g/L, which was 89.5% of the theoretical yield.</p><p><strong>Conclusions: </strong>The recombinant strain BSMAY-4-P<sub>srfA</sub> provides an economical and efficient strategy for large-scale industrial production of acetoin.</p>\",\"PeriodicalId\":9125,\"journal\":{\"name\":\"Biotechnology for Biofuels and Bioproducts\",\"volume\":\" \",\"pages\":\"87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400278/pdf/\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13068-022-02185-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-022-02185-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acetoin production from lignocellulosic biomass hydrolysates with a modular metabolic engineering system in Bacillus subtilis.
Background: Acetoin (AC) is a vital platform chemical widely used in food, pharmaceutical and chemical industries. With increasing concern over non-renewable resources and environmental issues, using low-cost biomass for acetoin production by microbial fermentation is undoubtedly a promising strategy.
Results: This work reduces the disadvantages of Bacillus subtilis during fermentation by regulating genes involved in spore formation and autolysis. Then, optimizing intracellular redox homeostasis through Rex protein mitigated the detrimental effects of NADH produced by the glycolytic metabolic pathway on the process of AC production. Subsequently, multiple pathways that compete with AC production are blocked to optimize carbon flux allocation. Finally, the population cell density-induced promoter was used to enhance the AC synthesis pathway. Fermentation was carried out in a 5-L bioreactor using bagasse lignocellulosic hydrolysate, resulting in a final titer of 64.3 g/L, which was 89.5% of the theoretical yield.
Conclusions: The recombinant strain BSMAY-4-PsrfA provides an economical and efficient strategy for large-scale industrial production of acetoin.