Megan Mueller, Benjamin Thompson, Tanya Poppe, Jane Alsweiler, Greg Gamble, Yannan Jiang, Myra Leung, Anna C Tottman, Trecia Wouldes, Jane E Harding, Emma G Duerden
{"title":"非常早产儿童的杏仁核亚核体积、功能连通性和社会情感结局。","authors":"Megan Mueller, Benjamin Thompson, Tanya Poppe, Jane Alsweiler, Greg Gamble, Yannan Jiang, Myra Leung, Anna C Tottman, Trecia Wouldes, Jane E Harding, Emma G Duerden","doi":"10.1093/texcom/tgac028","DOIUrl":null,"url":null,"abstract":"<p><p>Children born very preterm can demonstrate social-cognitive impairments, which may result from limbic system dysfunction. Altered development of the subnuclei of the amygdala, stress-sensitive regions involved in emotional processing, may be key predictors of social-skill development. In a prospective cohort study, 7-year-old children born very preterm underwent neurodevelopmental testing and brain MRI. The Child Behavioral Checklist was used to assess social-emotional outcomes. Subnuclei volumes were extracted automatically from structural scans (<i>n</i> = 69) and functional connectivity (<i>n</i> = 66) was examined. General Linear Models were employed to examine the relationships between amygdala subnuclei volumes and functional connectivity values and social-emotional outcomes. Sex was a significant predictor of all social-emotional outcomes (<i>P</i> < 0.05), with boys having poorer social-emotional outcomes. Smaller right basal nuclei volumes (<i>B</i> = -0.043, <i>P</i> = 0.014), smaller right cortical volumes (<i>B</i> = -0.242, <i>P</i> = 0.02) and larger right central nuclei volumes (<i>B</i> = 0.85, <i>P</i> = 0.049) were associated with increased social problems. Decreased connectivity strength between thalamic and amygdala networks and smaller right basal volumes were significant predictors of greater social problems (both, <i>P</i> < 0.05), effects which were stronger in girls (<i>P</i> = 0.025). Dysregulated maturation of the amygdala subnuclei, along with altered connectivity strength in stress-sensitive regions, may reflect stress-induced dysfunction and can be predictive of social-emotional outcomes.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgac028"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9383265/pdf/","citationCount":"0","resultStr":"{\"title\":\"Amygdala subnuclei volumes, functional connectivity, and social-emotional outcomes in children born very preterm.\",\"authors\":\"Megan Mueller, Benjamin Thompson, Tanya Poppe, Jane Alsweiler, Greg Gamble, Yannan Jiang, Myra Leung, Anna C Tottman, Trecia Wouldes, Jane E Harding, Emma G Duerden\",\"doi\":\"10.1093/texcom/tgac028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Children born very preterm can demonstrate social-cognitive impairments, which may result from limbic system dysfunction. Altered development of the subnuclei of the amygdala, stress-sensitive regions involved in emotional processing, may be key predictors of social-skill development. In a prospective cohort study, 7-year-old children born very preterm underwent neurodevelopmental testing and brain MRI. The Child Behavioral Checklist was used to assess social-emotional outcomes. Subnuclei volumes were extracted automatically from structural scans (<i>n</i> = 69) and functional connectivity (<i>n</i> = 66) was examined. General Linear Models were employed to examine the relationships between amygdala subnuclei volumes and functional connectivity values and social-emotional outcomes. Sex was a significant predictor of all social-emotional outcomes (<i>P</i> < 0.05), with boys having poorer social-emotional outcomes. Smaller right basal nuclei volumes (<i>B</i> = -0.043, <i>P</i> = 0.014), smaller right cortical volumes (<i>B</i> = -0.242, <i>P</i> = 0.02) and larger right central nuclei volumes (<i>B</i> = 0.85, <i>P</i> = 0.049) were associated with increased social problems. Decreased connectivity strength between thalamic and amygdala networks and smaller right basal volumes were significant predictors of greater social problems (both, <i>P</i> < 0.05), effects which were stronger in girls (<i>P</i> = 0.025). Dysregulated maturation of the amygdala subnuclei, along with altered connectivity strength in stress-sensitive regions, may reflect stress-induced dysfunction and can be predictive of social-emotional outcomes.</p>\",\"PeriodicalId\":72551,\"journal\":{\"name\":\"Cerebral cortex communications\",\"volume\":\" \",\"pages\":\"tgac028\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9383265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/texcom/tgac028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgac028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
早产儿可能表现出社会认知障碍,这可能是由边缘系统功能障碍引起的。杏仁核亚核的发育改变,与情绪处理有关的压力敏感区域,可能是社交技能发展的关键预测因素。在一项前瞻性队列研究中,7岁早产儿接受了神经发育测试和脑部MRI。儿童行为检查表用于评估社会情感结果。从结构扫描中自动提取亚核体积(n = 69),并检查功能连通性(n = 66)。采用一般线性模型检验杏仁核亚核体积与功能连接值和社交情绪结果之间的关系。性别是所有社会情绪结果的显著预测因子(P = -0.043, P = 0.014),较小的右侧皮质体积(B = -0.242, P = 0.02)和较大的右侧中央核体积(B = 0.85, P = 0.049)与社会问题的增加有关。丘脑和杏仁核网络之间连接强度的降低和右侧基底体积的减小是更严重的社会问题的显著预测因子(均P P = 0.025)。杏仁核亚核的成熟失调,以及应激敏感区域连接强度的改变,可能反映了应激诱导的功能障碍,并可以预测社会情感结果。
Amygdala subnuclei volumes, functional connectivity, and social-emotional outcomes in children born very preterm.
Children born very preterm can demonstrate social-cognitive impairments, which may result from limbic system dysfunction. Altered development of the subnuclei of the amygdala, stress-sensitive regions involved in emotional processing, may be key predictors of social-skill development. In a prospective cohort study, 7-year-old children born very preterm underwent neurodevelopmental testing and brain MRI. The Child Behavioral Checklist was used to assess social-emotional outcomes. Subnuclei volumes were extracted automatically from structural scans (n = 69) and functional connectivity (n = 66) was examined. General Linear Models were employed to examine the relationships between amygdala subnuclei volumes and functional connectivity values and social-emotional outcomes. Sex was a significant predictor of all social-emotional outcomes (P < 0.05), with boys having poorer social-emotional outcomes. Smaller right basal nuclei volumes (B = -0.043, P = 0.014), smaller right cortical volumes (B = -0.242, P = 0.02) and larger right central nuclei volumes (B = 0.85, P = 0.049) were associated with increased social problems. Decreased connectivity strength between thalamic and amygdala networks and smaller right basal volumes were significant predictors of greater social problems (both, P < 0.05), effects which were stronger in girls (P = 0.025). Dysregulated maturation of the amygdala subnuclei, along with altered connectivity strength in stress-sensitive regions, may reflect stress-induced dysfunction and can be predictive of social-emotional outcomes.