基于颜色和纹理直方图的医学图像相似性分析。

Current Health Sciences Journal Pub Date : 2022-04-01 Epub Date: 2022-06-30 DOI:10.12865/CHSJ.48.02.09
Mihaela Ionescu, Adina Dorina Glodeanu, Iulia Roxana Marinescu, Alin Gabriel Ionescu, Cristin Constantin Vere
{"title":"基于颜色和纹理直方图的医学图像相似性分析。","authors":"Mihaela Ionescu,&nbsp;Adina Dorina Glodeanu,&nbsp;Iulia Roxana Marinescu,&nbsp;Alin Gabriel Ionescu,&nbsp;Cristin Constantin Vere","doi":"10.12865/CHSJ.48.02.09","DOIUrl":null,"url":null,"abstract":"<p><p>Medical databases usually contain a significant volume of images, therefore search engines based on low-level features frequently used to retrieve similar images are necessary for a fast operation. Color, texture, and shape are the most common features used to characterize an image, however extracting the proper features for image retrievals in a similar manner with the human cognition remains a constant challenge. These algorithms work by sorting the images based on a similarity index that defines how different two or more images are, and histograms are one of the most employed methods for image comparison. In this paper, we have extended the concept of image database to the set of frames acquired following wireless capsule endoscopy (from a unique patient). Then, we have used color and texture histograms to identify very similar images (considered duplicates) and removed one of them for each pair of two successive frames. The volume reduction represented an average of 20% from the initial data set, only by removing frames with very similar informational content.</p>","PeriodicalId":10938,"journal":{"name":"Current Health Sciences Journal","volume":"48 2","pages":"196-202"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590363/pdf/","citationCount":"2","resultStr":"{\"title\":\"Similarity Analysis for Medical Images Using Color and Texture Histogramss.\",\"authors\":\"Mihaela Ionescu,&nbsp;Adina Dorina Glodeanu,&nbsp;Iulia Roxana Marinescu,&nbsp;Alin Gabriel Ionescu,&nbsp;Cristin Constantin Vere\",\"doi\":\"10.12865/CHSJ.48.02.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical databases usually contain a significant volume of images, therefore search engines based on low-level features frequently used to retrieve similar images are necessary for a fast operation. Color, texture, and shape are the most common features used to characterize an image, however extracting the proper features for image retrievals in a similar manner with the human cognition remains a constant challenge. These algorithms work by sorting the images based on a similarity index that defines how different two or more images are, and histograms are one of the most employed methods for image comparison. In this paper, we have extended the concept of image database to the set of frames acquired following wireless capsule endoscopy (from a unique patient). Then, we have used color and texture histograms to identify very similar images (considered duplicates) and removed one of them for each pair of two successive frames. The volume reduction represented an average of 20% from the initial data set, only by removing frames with very similar informational content.</p>\",\"PeriodicalId\":10938,\"journal\":{\"name\":\"Current Health Sciences Journal\",\"volume\":\"48 2\",\"pages\":\"196-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590363/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Health Sciences Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12865/CHSJ.48.02.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Health Sciences Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12865/CHSJ.48.02.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

医学数据库通常包含大量图像,因此基于低级特征的搜索引擎经常用于检索类似图像,以实现快速操作是必要的。颜色、纹理和形状是用来表征图像的最常见特征,然而,以类似于人类认知的方式提取图像检索的适当特征仍然是一个持续的挑战。这些算法的工作原理是根据相似性指数对图像进行排序,相似性指数定义了两个或多个图像的不同程度,直方图是图像比较中最常用的方法之一。在本文中,我们将图像数据库的概念扩展到无线胶囊内窥镜(来自一个独特的病人)后获得的一组帧。然后,我们使用颜色和纹理直方图来识别非常相似的图像(被认为是重复的),并为每一对连续的两帧删除其中的一个。仅通过删除具有非常相似信息内容的帧,体积比初始数据集平均减少了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Similarity Analysis for Medical Images Using Color and Texture Histogramss.

Medical databases usually contain a significant volume of images, therefore search engines based on low-level features frequently used to retrieve similar images are necessary for a fast operation. Color, texture, and shape are the most common features used to characterize an image, however extracting the proper features for image retrievals in a similar manner with the human cognition remains a constant challenge. These algorithms work by sorting the images based on a similarity index that defines how different two or more images are, and histograms are one of the most employed methods for image comparison. In this paper, we have extended the concept of image database to the set of frames acquired following wireless capsule endoscopy (from a unique patient). Then, we have used color and texture histograms to identify very similar images (considered duplicates) and removed one of them for each pair of two successive frames. The volume reduction represented an average of 20% from the initial data set, only by removing frames with very similar informational content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HOSPITAL WASTE MANAGEMENT AND TREATMENT IN HEALTHCARE SECTOR: A REVIEW HOUSEHOLD COPING STRATEGIES FOR DELIVERY CARE COSTS: FINDINGS FROM A RURAL DISTRICT OF PAKISTAN DIFFICULTY IN USABILITY OF ELECTRONIC PERSONAL HEALTH RECORD SYSTEMS FOR AN UNDERSERVED ELDERLY ADULT POPULATION A PROFILE OF DIABETIC RETINOPATY PATIENTS RECEIVING GREEN LASER FROM 2015 TO 2019 IN D.I.KHAN DIVISION, PAKISTAN RELATIONSHIP BETWEEN JOB EMBEDDEDNESS, ETHICAL CLIMATE WITH NURSES’ TURNOVER: THE MODERATING ROLE OF LOCUS OF CONTROL AND PERCEIVED EMPLOYMENT ALTERNATIVES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1