动态面板回归的时间平均估计。

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2021-07-26 eCollection Date: 2022-09-01 DOI:10.1515/snde-2019-0084
Ba Chu
{"title":"动态面板回归的时间平均估计。","authors":"Ba Chu","doi":"10.1515/snde-2019-0084","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces an unbiased estimator based on least squares involving time-specific cross-sectional averages for a first-order panel autoregression with a strictly exogenous covariate. The proposed estimator is straightforward to implement as long as the variables of interest have sufficient time variation. The number of cross-sections (<i>N</i>) and the number of time periods (<i>T</i>) can be large, and there is no restriction on the growth rate of <i>N</i> relative to <i>T</i>. It is demonstrated via both theory and a simulation study that the estimator is asymptotically unbiased, and it can provide correct empirical coverage probabilities for the 'true' coefficients of the model for various combinations of <i>N</i> and <i>T</i>. An empirical application is also provided to confirm the feasibility of the proposed approach.</p>","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 4","pages":"581-616"},"PeriodicalIF":0.7000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/snde-2019-0084","citationCount":"0","resultStr":"{\"title\":\"Time-specific average estimation of dynamic panel regressions.\",\"authors\":\"Ba Chu\",\"doi\":\"10.1515/snde-2019-0084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces an unbiased estimator based on least squares involving time-specific cross-sectional averages for a first-order panel autoregression with a strictly exogenous covariate. The proposed estimator is straightforward to implement as long as the variables of interest have sufficient time variation. The number of cross-sections (<i>N</i>) and the number of time periods (<i>T</i>) can be large, and there is no restriction on the growth rate of <i>N</i> relative to <i>T</i>. It is demonstrated via both theory and a simulation study that the estimator is asymptotically unbiased, and it can provide correct empirical coverage probabilities for the 'true' coefficients of the model for various combinations of <i>N</i> and <i>T</i>. An empirical application is also provided to confirm the feasibility of the proposed approach.</p>\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\"26 4\",\"pages\":\"581-616\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/snde-2019-0084\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2019-0084\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2019-0084","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了具有严格外生协变量的一阶面板自回归的一种基于最小二乘的无偏估计。只要感兴趣的变量有足够的时间变化,所提出的估计器就可以直接实现。截面的数目(N)和时间(T)的数量大,而且没有限制的增长率相对于T . N是通过理论和仿真研究证明渐近无偏估计量,它可以提供正确的经验覆盖概率模型的“真实”系数的各种组合N和T .实证应用程序还提供了证实了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-specific average estimation of dynamic panel regressions.

This paper introduces an unbiased estimator based on least squares involving time-specific cross-sectional averages for a first-order panel autoregression with a strictly exogenous covariate. The proposed estimator is straightforward to implement as long as the variables of interest have sufficient time variation. The number of cross-sections (N) and the number of time periods (T) can be large, and there is no restriction on the growth rate of N relative to T. It is demonstrated via both theory and a simulation study that the estimator is asymptotically unbiased, and it can provide correct empirical coverage probabilities for the 'true' coefficients of the model for various combinations of N and T. An empirical application is also provided to confirm the feasibility of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1