{"title":"与IRF9去磷酸化相关的古人类特异性氨基酸突变的正选择驱动固定。","authors":"Jianhai Chen, Xuefei He, Ivan Jakovlić","doi":"10.1186/s12862-022-02088-5","DOIUrl":null,"url":null,"abstract":"<p><p>The arms race between humans and pathogens drives the evolution of the human genome. It is thus expected that genes from the interferon-regulatory factors family (IRFs), a critical family for anti-viral immune response, should be undergoing episodes of positive selection. Herein, we tested this hypothesis and found multiple lines of evidence for positive selection on the amino acid site Val129 (NP_006075.3:p.Ser129Val) of human IRF9. Interestingly, the ancestral reconstruction and population distribution analyses revealed that the ancestral state (Ser129) is conserved among mammals, while the derived positively selected state (Val129) was fixed before the \"out-of-Africa\" event ~ 500,000 years ago. The motif analysis revealed that this young amino acid (Val129) may serve as a dephosphorylation site of IRF9. Structural parallelism between homologous genes further suggested the functional effects underlying the dephosphorylation that may affect the immune activity of IRF9. This study provides a model in which a strong positive Darwinian selection drives a recent fixation of a hominin-specific amino acid leading to molecular adaptation involving dephosphorylation in an immune-responsive gene.</p>","PeriodicalId":9127,"journal":{"name":"BMC Ecology and Evolution","volume":" ","pages":"132"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650800/pdf/","citationCount":"0","resultStr":"{\"title\":\"Positive selection-driven fixation of a hominin-specific amino acid mutation related to dephosphorylation in IRF9.\",\"authors\":\"Jianhai Chen, Xuefei He, Ivan Jakovlić\",\"doi\":\"10.1186/s12862-022-02088-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The arms race between humans and pathogens drives the evolution of the human genome. It is thus expected that genes from the interferon-regulatory factors family (IRFs), a critical family for anti-viral immune response, should be undergoing episodes of positive selection. Herein, we tested this hypothesis and found multiple lines of evidence for positive selection on the amino acid site Val129 (NP_006075.3:p.Ser129Val) of human IRF9. Interestingly, the ancestral reconstruction and population distribution analyses revealed that the ancestral state (Ser129) is conserved among mammals, while the derived positively selected state (Val129) was fixed before the \\\"out-of-Africa\\\" event ~ 500,000 years ago. The motif analysis revealed that this young amino acid (Val129) may serve as a dephosphorylation site of IRF9. Structural parallelism between homologous genes further suggested the functional effects underlying the dephosphorylation that may affect the immune activity of IRF9. This study provides a model in which a strong positive Darwinian selection drives a recent fixation of a hominin-specific amino acid leading to molecular adaptation involving dephosphorylation in an immune-responsive gene.</p>\",\"PeriodicalId\":9127,\"journal\":{\"name\":\"BMC Ecology and Evolution\",\"volume\":\" \",\"pages\":\"132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650800/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Ecology and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12862-022-02088-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Ecology and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-022-02088-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Positive selection-driven fixation of a hominin-specific amino acid mutation related to dephosphorylation in IRF9.
The arms race between humans and pathogens drives the evolution of the human genome. It is thus expected that genes from the interferon-regulatory factors family (IRFs), a critical family for anti-viral immune response, should be undergoing episodes of positive selection. Herein, we tested this hypothesis and found multiple lines of evidence for positive selection on the amino acid site Val129 (NP_006075.3:p.Ser129Val) of human IRF9. Interestingly, the ancestral reconstruction and population distribution analyses revealed that the ancestral state (Ser129) is conserved among mammals, while the derived positively selected state (Val129) was fixed before the "out-of-Africa" event ~ 500,000 years ago. The motif analysis revealed that this young amino acid (Val129) may serve as a dephosphorylation site of IRF9. Structural parallelism between homologous genes further suggested the functional effects underlying the dephosphorylation that may affect the immune activity of IRF9. This study provides a model in which a strong positive Darwinian selection drives a recent fixation of a hominin-specific amino acid leading to molecular adaptation involving dephosphorylation in an immune-responsive gene.