人工智能与甲状腺疾病管理:甲状腺功能检测的注意事项。

IF 3.8 3区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY Biochemia Medica Pub Date : 2022-06-15 DOI:10.11613/BM.2022.020601
Damien Gruson, Pradeep Dabla, Sanja Stankovic, Evgenija Homsak, Bernard Gouget, Sergio Bernardini, Benoit Macq
{"title":"人工智能与甲状腺疾病管理:甲状腺功能检测的注意事项。","authors":"Damien Gruson, Pradeep Dabla, Sanja Stankovic, Evgenija Homsak, Bernard Gouget, Sergio Bernardini, Benoit Macq","doi":"10.11613/BM.2022.020601","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is transforming healthcare and offers new tools in clinical research, personalized medicine, and medical diagnostics. Thyroid function tests represent an important asset for physicians in the diagnosis and monitoring of pathologies. Artificial intelligence tools can clearly assist physicians and specialists in laboratory medicine to optimize test prescription, tests interpretation, decision making, process optimization, and assay design. Our article is reviewing several of these aspects. As thyroid AI models rely on large data sets, which often requires distributed learning from multi-center contributions, this article also briefly discusses this issue.</p>","PeriodicalId":9021,"journal":{"name":"Biochemia Medica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9195598/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence and thyroid disease management: considerations for thyroid function tests.\",\"authors\":\"Damien Gruson, Pradeep Dabla, Sanja Stankovic, Evgenija Homsak, Bernard Gouget, Sergio Bernardini, Benoit Macq\",\"doi\":\"10.11613/BM.2022.020601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) is transforming healthcare and offers new tools in clinical research, personalized medicine, and medical diagnostics. Thyroid function tests represent an important asset for physicians in the diagnosis and monitoring of pathologies. Artificial intelligence tools can clearly assist physicians and specialists in laboratory medicine to optimize test prescription, tests interpretation, decision making, process optimization, and assay design. Our article is reviewing several of these aspects. As thyroid AI models rely on large data sets, which often requires distributed learning from multi-center contributions, this article also briefly discusses this issue.</p>\",\"PeriodicalId\":9021,\"journal\":{\"name\":\"Biochemia Medica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9195598/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemia Medica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.11613/BM.2022.020601\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11613/BM.2022.020601","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)正在改变医疗保健,并为临床研究、个性化医疗和医疗诊断提供了新的工具。甲状腺功能检测是医生诊断和监测病症的重要资产。人工智能工具显然可以帮助医生和检验医学专家优化检验处方、检验解释、决策制定、流程优化和化验设计。我们的文章将对其中几个方面进行回顾。由于甲状腺人工智能模型依赖于大型数据集,通常需要从多中心贡献的数据中进行分布式学习,因此本文也简要讨论了这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence and thyroid disease management: considerations for thyroid function tests.

Artificial intelligence (AI) is transforming healthcare and offers new tools in clinical research, personalized medicine, and medical diagnostics. Thyroid function tests represent an important asset for physicians in the diagnosis and monitoring of pathologies. Artificial intelligence tools can clearly assist physicians and specialists in laboratory medicine to optimize test prescription, tests interpretation, decision making, process optimization, and assay design. Our article is reviewing several of these aspects. As thyroid AI models rely on large data sets, which often requires distributed learning from multi-center contributions, this article also briefly discusses this issue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemia Medica
Biochemia Medica 医学-医学实验技术
CiteScore
5.50
自引率
3.00%
发文量
70
审稿时长
>12 weeks
期刊介绍: Biochemia Medica is the official peer-reviewed journal of the Croatian Society of Medical Biochemistry and Laboratory Medicine. Journal provides a wide coverage of research in all aspects of clinical chemistry and laboratory medicine. Following categories fit into the scope of the Journal: general clinical chemistry, haematology and haemostasis, molecular diagnostics and endocrinology. Development, validation and verification of analytical techniques and methods applicable to clinical chemistry and laboratory medicine are welcome as well as studies dealing with laboratory organization, automation and quality control. Journal publishes on a regular basis educative preanalytical case reports (Preanalytical mysteries), articles dealing with applied biostatistics (Lessons in biostatistics) and research integrity (Research integrity corner).
期刊最新文献
Quality assurance of add-on testing in plasma samples: stability limit for 29 biochemical analytes Two cases with discrepancy in the quantitative cytological assessment of cerebrospinal fluid in neonatal samples using light microscopy in comparison with Sysmex XN-1000 Common P-glycoprotein () polymorphisms do not seem to be associated with the risk of rivaroxaban-related bleeding events: Preliminary data CLSI-based verification and establishment of reference intervals for common biochemical assays in Croatian newborns Prediction interval: A powerful statistical tool for monitoring patients and analytical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1