{"title":"纳米银和纳米硒对鲤生长性能、生化指标和免疫应答的影响","authors":"Natwar Jha, Asaikutti Annamalai, Palanichamy Essakiraj, Ramachandran Balamurugan, Avinash Kant Lakra, Younus Mohd Tilwani, Venkatesan Arul","doi":"10.1016/j.fsirep.2022.100062","DOIUrl":null,"url":null,"abstract":"<div><p><em>Avicennia marina</em> mangrove leaves polysaccharide (AMLP) was used for the synthesis of polysaccharide-based selenium (AMLP-SeNPs) and silver nanoparticles (AMLP-AgNPs). The synthesized nanoparticles were further characterized by UV-Vis, DLS, FT-IR, X-ray diffraction, and HR-TEM analysis. A 60-day (8 weeks) feeding trial experiment was conducted to investigate the effects of AMLP, AMLP-SeNPs, and AMLP-AgNPs dietary supplementation on growth performance parameters, blood parameters, immunological and enzymatic profiles in <em>Cyprinus carpio</em>. The characterization results of AMLP-SeNPs and AMLP-AgNPs confirmed the formation of well-stabilized spherical nanoparticles with a mean particle size of 37.25 and 72.40 nm, respectively having a crystalline structure. The feeding experiment results demonstrated that 2 mg/kg of AMLP-SeNPs followed by 0.2 mg/kg of AMLP-AgNPs showed significantly (<em>p</em> ˂ 0.05) higher final weight, weight gain (WG), specific growth rate (SGR%), protein and lipid efficiency, and lower food conversion ratio as compared to other groups. The catalase, superoxidase dismutase, and glutathione peroxidase activity were significantly (<em>p</em> ˂ 0.05) higher in the group fed 2 mg/kg supplemented AMLP-SeNPs. Total protein and globulin contents were significantly (<em>p</em> ˂ 0.05) higher and albumin concentration was significantly lower in fish that received 2 mg/kg of AMLP- SeNPs as compared to control. A significant increase in serum HDL and decrease in LDL and MDA concentrations were observed in the group supplemented with 2 mg/kg of nano selenium. The body's crude lipid, protein, moisture, and ash were not significantly different from the control. The AMLP-SeNPs showed significantly (<em>p</em> ˂ 0.05) lower aspartate aminotransferase (AST), alanine aminotransferase (ALT), and higher alkaline phosphatase (ALP) activities compared to other test groups. The relative percentage survivability (RPS%) was higher in AMLP-SeNPs (84.6%) followed by AMLP-AgNPs (76.7%) after 8<sup>th</sup> weeks of supplementary diets as compared to control groups. Overall, the finding of these studies revealed that the inclusion of AMLP-SeNPs improved the growth performance and antioxidant defense system, enhance immune response, and provide resistance against <em>Aeromonas hydrophila</em> in Common carp.</p></div>","PeriodicalId":73029,"journal":{"name":"Fish and shellfish immunology reports","volume":"3 ","pages":"Article 100062"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/c1/main.PMC9680073.pdf","citationCount":"3","resultStr":"{\"title\":\"Effects of polysaccharide-based silver and selenium nanoparticles on growth performance, biochemical parameters, and immune response of Cyprinus carpio\",\"authors\":\"Natwar Jha, Asaikutti Annamalai, Palanichamy Essakiraj, Ramachandran Balamurugan, Avinash Kant Lakra, Younus Mohd Tilwani, Venkatesan Arul\",\"doi\":\"10.1016/j.fsirep.2022.100062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Avicennia marina</em> mangrove leaves polysaccharide (AMLP) was used for the synthesis of polysaccharide-based selenium (AMLP-SeNPs) and silver nanoparticles (AMLP-AgNPs). The synthesized nanoparticles were further characterized by UV-Vis, DLS, FT-IR, X-ray diffraction, and HR-TEM analysis. A 60-day (8 weeks) feeding trial experiment was conducted to investigate the effects of AMLP, AMLP-SeNPs, and AMLP-AgNPs dietary supplementation on growth performance parameters, blood parameters, immunological and enzymatic profiles in <em>Cyprinus carpio</em>. The characterization results of AMLP-SeNPs and AMLP-AgNPs confirmed the formation of well-stabilized spherical nanoparticles with a mean particle size of 37.25 and 72.40 nm, respectively having a crystalline structure. The feeding experiment results demonstrated that 2 mg/kg of AMLP-SeNPs followed by 0.2 mg/kg of AMLP-AgNPs showed significantly (<em>p</em> ˂ 0.05) higher final weight, weight gain (WG), specific growth rate (SGR%), protein and lipid efficiency, and lower food conversion ratio as compared to other groups. The catalase, superoxidase dismutase, and glutathione peroxidase activity were significantly (<em>p</em> ˂ 0.05) higher in the group fed 2 mg/kg supplemented AMLP-SeNPs. Total protein and globulin contents were significantly (<em>p</em> ˂ 0.05) higher and albumin concentration was significantly lower in fish that received 2 mg/kg of AMLP- SeNPs as compared to control. A significant increase in serum HDL and decrease in LDL and MDA concentrations were observed in the group supplemented with 2 mg/kg of nano selenium. The body's crude lipid, protein, moisture, and ash were not significantly different from the control. The AMLP-SeNPs showed significantly (<em>p</em> ˂ 0.05) lower aspartate aminotransferase (AST), alanine aminotransferase (ALT), and higher alkaline phosphatase (ALP) activities compared to other test groups. The relative percentage survivability (RPS%) was higher in AMLP-SeNPs (84.6%) followed by AMLP-AgNPs (76.7%) after 8<sup>th</sup> weeks of supplementary diets as compared to control groups. Overall, the finding of these studies revealed that the inclusion of AMLP-SeNPs improved the growth performance and antioxidant defense system, enhance immune response, and provide resistance against <em>Aeromonas hydrophila</em> in Common carp.</p></div>\",\"PeriodicalId\":73029,\"journal\":{\"name\":\"Fish and shellfish immunology reports\",\"volume\":\"3 \",\"pages\":\"Article 100062\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/c1/main.PMC9680073.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and shellfish immunology reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667011922000123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and shellfish immunology reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667011922000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Effects of polysaccharide-based silver and selenium nanoparticles on growth performance, biochemical parameters, and immune response of Cyprinus carpio
Avicennia marina mangrove leaves polysaccharide (AMLP) was used for the synthesis of polysaccharide-based selenium (AMLP-SeNPs) and silver nanoparticles (AMLP-AgNPs). The synthesized nanoparticles were further characterized by UV-Vis, DLS, FT-IR, X-ray diffraction, and HR-TEM analysis. A 60-day (8 weeks) feeding trial experiment was conducted to investigate the effects of AMLP, AMLP-SeNPs, and AMLP-AgNPs dietary supplementation on growth performance parameters, blood parameters, immunological and enzymatic profiles in Cyprinus carpio. The characterization results of AMLP-SeNPs and AMLP-AgNPs confirmed the formation of well-stabilized spherical nanoparticles with a mean particle size of 37.25 and 72.40 nm, respectively having a crystalline structure. The feeding experiment results demonstrated that 2 mg/kg of AMLP-SeNPs followed by 0.2 mg/kg of AMLP-AgNPs showed significantly (p ˂ 0.05) higher final weight, weight gain (WG), specific growth rate (SGR%), protein and lipid efficiency, and lower food conversion ratio as compared to other groups. The catalase, superoxidase dismutase, and glutathione peroxidase activity were significantly (p ˂ 0.05) higher in the group fed 2 mg/kg supplemented AMLP-SeNPs. Total protein and globulin contents were significantly (p ˂ 0.05) higher and albumin concentration was significantly lower in fish that received 2 mg/kg of AMLP- SeNPs as compared to control. A significant increase in serum HDL and decrease in LDL and MDA concentrations were observed in the group supplemented with 2 mg/kg of nano selenium. The body's crude lipid, protein, moisture, and ash were not significantly different from the control. The AMLP-SeNPs showed significantly (p ˂ 0.05) lower aspartate aminotransferase (AST), alanine aminotransferase (ALT), and higher alkaline phosphatase (ALP) activities compared to other test groups. The relative percentage survivability (RPS%) was higher in AMLP-SeNPs (84.6%) followed by AMLP-AgNPs (76.7%) after 8th weeks of supplementary diets as compared to control groups. Overall, the finding of these studies revealed that the inclusion of AMLP-SeNPs improved the growth performance and antioxidant defense system, enhance immune response, and provide resistance against Aeromonas hydrophila in Common carp.