使用3D打印制作的囊内血流分流器进行动脉瘤栓塞管理的脑血管建模。

IF 0.9 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Polish Journal of Radiology Pub Date : 2022-10-15 eCollection Date: 2022-01-01 DOI:10.5114/pjr.2022.120520
Oktay Algin, Ayse Keles, Cagdas Oto
{"title":"使用3D打印制作的囊内血流分流器进行动脉瘤栓塞管理的脑血管建模。","authors":"Oktay Algin,&nbsp;Ayse Keles,&nbsp;Cagdas Oto","doi":"10.5114/pjr.2022.120520","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Using 3-dimensional (3D) printers, the creation of patient-specific models is possible before and after a therapeutic intervention. There are many articles about replicas for training and simulation of aneurysm clipping. However, no paper has focused on 3D replicas obtained from 3-tesla 3D time of flight (3D-TOF) MR angiography for intrasaccular flow diverter (WEB device) embolization of the cerebral aneurysms. In this paper, we aimed to investigate the feasibility of 3D printing models obtained from 3-tesla 3D-TOF data in the management and training of WEB-assisted embolization procedures.</p><p><strong>Case presentation: </strong>We presented a longitudinal case report with several 3D-TOF MRA prints over time. Three-tesla 3D-TOF data were converted into STL and G-code files using an open-source (3D-Slicer) program. We built patient-specific realistic 3D models of a patient with a middle cerebral artery trifurcation aneurysm, which were able to demonstrate the entire WEB device treatment procedure in the pre-intervention and post-intervention periods. The aneurysmatic segment was well displayed on the STL files and the 3D replicas. They allowed visualization of the aneurysmatic segment and changes within a 6-year follow-up period. We successfully showed the possibility of fast, cheap, and easy production of replicas for demonstration of the aneurysm, the parent vessels, and post-intervention changes in a simple way using an affordable 3D printer.</p><p><strong>Conclusions: </strong>3D printing is useful for training the endovascular team and the patients, understanding the aneurysm/parent vessels, and choosing the optimal embolization technique/device. 3D printing will potentially lead to greater interventionalist confidence, decreased radiation dose, and improvements in patient safety.</p>","PeriodicalId":47128,"journal":{"name":"Polish Journal of Radiology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/93/PJR-87-48035.PMC9673973.pdf","citationCount":"2","resultStr":"{\"title\":\"Cerebrovascular modelling for the management of aneurysm embolization using an intrasaccular flow diverter made by 3D printing.\",\"authors\":\"Oktay Algin,&nbsp;Ayse Keles,&nbsp;Cagdas Oto\",\"doi\":\"10.5114/pjr.2022.120520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Using 3-dimensional (3D) printers, the creation of patient-specific models is possible before and after a therapeutic intervention. There are many articles about replicas for training and simulation of aneurysm clipping. However, no paper has focused on 3D replicas obtained from 3-tesla 3D time of flight (3D-TOF) MR angiography for intrasaccular flow diverter (WEB device) embolization of the cerebral aneurysms. In this paper, we aimed to investigate the feasibility of 3D printing models obtained from 3-tesla 3D-TOF data in the management and training of WEB-assisted embolization procedures.</p><p><strong>Case presentation: </strong>We presented a longitudinal case report with several 3D-TOF MRA prints over time. Three-tesla 3D-TOF data were converted into STL and G-code files using an open-source (3D-Slicer) program. We built patient-specific realistic 3D models of a patient with a middle cerebral artery trifurcation aneurysm, which were able to demonstrate the entire WEB device treatment procedure in the pre-intervention and post-intervention periods. The aneurysmatic segment was well displayed on the STL files and the 3D replicas. They allowed visualization of the aneurysmatic segment and changes within a 6-year follow-up period. We successfully showed the possibility of fast, cheap, and easy production of replicas for demonstration of the aneurysm, the parent vessels, and post-intervention changes in a simple way using an affordable 3D printer.</p><p><strong>Conclusions: </strong>3D printing is useful for training the endovascular team and the patients, understanding the aneurysm/parent vessels, and choosing the optimal embolization technique/device. 3D printing will potentially lead to greater interventionalist confidence, decreased radiation dose, and improvements in patient safety.</p>\",\"PeriodicalId\":47128,\"journal\":{\"name\":\"Polish Journal of Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/09/93/PJR-87-48035.PMC9673973.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5114/pjr.2022.120520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/pjr.2022.120520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 2

摘要

目的:使用三维(3D)打印机,可以在治疗干预前后创建患者特定模型。有许多文章关于训练和模拟动脉瘤夹闭的复制品。然而,没有一篇论文关注通过3-特斯拉3D飞行时间(3D- tof) MR血管造影获得的用于脑动脉瘤囊内血流分流器(WEB装置)栓塞的3D复制品。在本文中,我们旨在探讨从3-tesla 3D- tof数据中获得的3D打印模型在web辅助栓塞手术管理和培训中的可行性。病例介绍:我们提出了纵向病例报告与几个3D-TOF MRA打印随着时间的推移。使用开源(3D-Slicer)程序将3 -tesla 3D-TOF数据转换为STL和G-code文件。我们建立了一名大脑中动脉三岔动脉瘤患者的真实三维模型,该模型能够展示干预前和干预后设备的整个治疗过程。动脉瘤段在STL文件和3D复制品上显示良好。他们允许在6年的随访期间可视化动脉瘤段和变化。我们成功地展示了快速、廉价、容易地复制动脉瘤、母血管和干预后变化的可能性,用一种简单的方式使用价格合理的3D打印机。结论:3D打印技术有助于培训血管内团队和患者,了解动脉瘤/母血管,选择最佳栓塞技术/设备。3D打印将有可能提高介入医师的信心,降低辐射剂量,并提高患者的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cerebrovascular modelling for the management of aneurysm embolization using an intrasaccular flow diverter made by 3D printing.

Purpose: Using 3-dimensional (3D) printers, the creation of patient-specific models is possible before and after a therapeutic intervention. There are many articles about replicas for training and simulation of aneurysm clipping. However, no paper has focused on 3D replicas obtained from 3-tesla 3D time of flight (3D-TOF) MR angiography for intrasaccular flow diverter (WEB device) embolization of the cerebral aneurysms. In this paper, we aimed to investigate the feasibility of 3D printing models obtained from 3-tesla 3D-TOF data in the management and training of WEB-assisted embolization procedures.

Case presentation: We presented a longitudinal case report with several 3D-TOF MRA prints over time. Three-tesla 3D-TOF data were converted into STL and G-code files using an open-source (3D-Slicer) program. We built patient-specific realistic 3D models of a patient with a middle cerebral artery trifurcation aneurysm, which were able to demonstrate the entire WEB device treatment procedure in the pre-intervention and post-intervention periods. The aneurysmatic segment was well displayed on the STL files and the 3D replicas. They allowed visualization of the aneurysmatic segment and changes within a 6-year follow-up period. We successfully showed the possibility of fast, cheap, and easy production of replicas for demonstration of the aneurysm, the parent vessels, and post-intervention changes in a simple way using an affordable 3D printer.

Conclusions: 3D printing is useful for training the endovascular team and the patients, understanding the aneurysm/parent vessels, and choosing the optimal embolization technique/device. 3D printing will potentially lead to greater interventionalist confidence, decreased radiation dose, and improvements in patient safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Journal of Radiology
Polish Journal of Radiology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Lung ultrasound in a nutshell. Lines, signs, some applications, and misconceptions from a radiologist's point of view. Ablation of pulmonary neoplasms: review of literature and future perspectives. Bone marrow lesions of the femoral head: can radiomics distinguish whether it is reversible? Summary of radiation dose management and optimization: comparison of radiation protection measures between Poland and other countries. Diagnosis and treatment of peritoneal carcinomatosis - a comprehensive overview.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1