多维遗传规划的语义变异算子。

William La Cava, Jason H Moore
{"title":"多维遗传规划的语义变异算子。","authors":"William La Cava,&nbsp;Jason H Moore","doi":"10.1145/3321707.3321776","DOIUrl":null,"url":null,"abstract":"<p><p>Multidimensional genetic programming represents candidate solutions as sets of programs, and thereby provides an interesting framework for exploiting building block identification. Towards this goal, we investigate the use of machine learning as a way to bias which components of programs are promoted, and propose two semantic operators to choose where useful building blocks are placed during crossover. A forward stagewise crossover operator we propose leads to significant improvements on a set of regression problems, and produces state-of-the-art results in a large benchmark study. We discuss this architecture and others in terms of their propensity for allowing heuristic search to utilize information during the evolutionary process. Finally, we look at the collinearity and complexity of the data representations that result from these architectures, with a view towards disentangling factors of variation in application.</p>","PeriodicalId":88876,"journal":{"name":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","volume":" ","pages":"1056-1064"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3321707.3321776","citationCount":"15","resultStr":"{\"title\":\"Semantic variation operators for multidimensional genetic programming.\",\"authors\":\"William La Cava,&nbsp;Jason H Moore\",\"doi\":\"10.1145/3321707.3321776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multidimensional genetic programming represents candidate solutions as sets of programs, and thereby provides an interesting framework for exploiting building block identification. Towards this goal, we investigate the use of machine learning as a way to bias which components of programs are promoted, and propose two semantic operators to choose where useful building blocks are placed during crossover. A forward stagewise crossover operator we propose leads to significant improvements on a set of regression problems, and produces state-of-the-art results in a large benchmark study. We discuss this architecture and others in terms of their propensity for allowing heuristic search to utilize information during the evolutionary process. Finally, we look at the collinearity and complexity of the data representations that result from these architectures, with a view towards disentangling factors of variation in application.</p>\",\"PeriodicalId\":88876,\"journal\":{\"name\":\"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference\",\"volume\":\" \",\"pages\":\"1056-1064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3321707.3321776\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3321707.3321776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3321707.3321776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

多维遗传规划将候选解决方案表示为程序集,从而为开发构建块识别提供了一个有趣的框架。为了实现这一目标,我们研究了机器学习的使用,作为一种偏向于哪些程序组件被提升的方法,并提出了两个语义算子来选择在交叉过程中放置有用的构建块的位置。我们提出的前向阶段交叉算子可以显著改善一系列回归问题,并在大型基准研究中产生最先进的结果。我们将讨论这种架构和其他架构,因为它们倾向于允许启发式搜索在进化过程中利用信息。最后,我们着眼于从这些体系结构中产生的数据表示的共线性和复杂性,以期解开应用中变化的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic variation operators for multidimensional genetic programming.

Multidimensional genetic programming represents candidate solutions as sets of programs, and thereby provides an interesting framework for exploiting building block identification. Towards this goal, we investigate the use of machine learning as a way to bias which components of programs are promoted, and propose two semantic operators to choose where useful building blocks are placed during crossover. A forward stagewise crossover operator we propose leads to significant improvements on a set of regression problems, and produces state-of-the-art results in a large benchmark study. We discuss this architecture and others in terms of their propensity for allowing heuristic search to utilize information during the evolutionary process. Finally, we look at the collinearity and complexity of the data representations that result from these architectures, with a view towards disentangling factors of variation in application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grammar-Based Vectorial Genetic Programming for Symbolic Regression Designing Multiple ANNs with Evolutionary Development: Activity Dependence Evolution of the Semiconductor Industry, and the Start of X Law Back to the Future—Revisiting OrdinalGP and Trustable Models After a Decade Finding Simple Solutions to Multi-Task Visual Reinforcement Learning Problems with Tangled Program Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1