Simon Seidel, Mariano Nicolas Cruz-Bournazou, Sebastian Groß, Julia Katharina Schollmeyer, Anke Kurreck, Stefan Krauss, Peter Neubauer
{"title":"数字化生物技术实验室中酶产品开发的综合IT基础设施。","authors":"Simon Seidel, Mariano Nicolas Cruz-Bournazou, Sebastian Groß, Julia Katharina Schollmeyer, Anke Kurreck, Stefan Krauss, Peter Neubauer","doi":"10.1007/10_2022_207","DOIUrl":null,"url":null,"abstract":"<p><p>Typical product development in biotechnological laboratories is a distributed and versatile process. Today's biotechnological laboratory devices are usually equipped with multiple sensors and a variety of interfaces. The existing software for biotechnological research and development is often specialized on specific tasks and thus generates task-specific information. Scientific personnel is confronted with an abundance of information from a variety of sources. Hence a comprehensive software backbone that structures the developmental process and maintains data from various sources is missing. Thus, it is not possible to maintain data access, documentation, reporting, availability, and proper data exchange. This chapter envisions a comprehensive digital infrastructure handling the data throughout an enzymatic product development process in a laboratory. The platform integrates a variety of software products, databases, and devices to make all product development life cycle (PDLC) data available and accessible to the scientific staff.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"61-82"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comprehensive IT Infrastructure for an Enzymatic Product Development in a Digitalized Biotechnological Laboratory.\",\"authors\":\"Simon Seidel, Mariano Nicolas Cruz-Bournazou, Sebastian Groß, Julia Katharina Schollmeyer, Anke Kurreck, Stefan Krauss, Peter Neubauer\",\"doi\":\"10.1007/10_2022_207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Typical product development in biotechnological laboratories is a distributed and versatile process. Today's biotechnological laboratory devices are usually equipped with multiple sensors and a variety of interfaces. The existing software for biotechnological research and development is often specialized on specific tasks and thus generates task-specific information. Scientific personnel is confronted with an abundance of information from a variety of sources. Hence a comprehensive software backbone that structures the developmental process and maintains data from various sources is missing. Thus, it is not possible to maintain data access, documentation, reporting, availability, and proper data exchange. This chapter envisions a comprehensive digital infrastructure handling the data throughout an enzymatic product development process in a laboratory. The platform integrates a variety of software products, databases, and devices to make all product development life cycle (PDLC) data available and accessible to the scientific staff.</p>\",\"PeriodicalId\":7198,\"journal\":{\"name\":\"Advances in biochemical engineering/biotechnology\",\"volume\":\" \",\"pages\":\"61-82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biochemical engineering/biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/10_2022_207\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2022_207","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
A Comprehensive IT Infrastructure for an Enzymatic Product Development in a Digitalized Biotechnological Laboratory.
Typical product development in biotechnological laboratories is a distributed and versatile process. Today's biotechnological laboratory devices are usually equipped with multiple sensors and a variety of interfaces. The existing software for biotechnological research and development is often specialized on specific tasks and thus generates task-specific information. Scientific personnel is confronted with an abundance of information from a variety of sources. Hence a comprehensive software backbone that structures the developmental process and maintains data from various sources is missing. Thus, it is not possible to maintain data access, documentation, reporting, availability, and proper data exchange. This chapter envisions a comprehensive digital infrastructure handling the data throughout an enzymatic product development process in a laboratory. The platform integrates a variety of software products, databases, and devices to make all product development life cycle (PDLC) data available and accessible to the scientific staff.
期刊介绍:
Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.