40 Hz伽玛tACS诱导双侧背外侧前额皮质局部和分布的fMRI变化:一项初步研究。

IF 3.1 4区 医学 Q2 Medicine Neural Plasticity Pub Date : 2022-07-16 eCollection Date: 2022-01-01 DOI:10.1155/2022/6197505
Lucia Mencarelli, Lucia Monti, Sara Romanella, Francesco Neri, Giacomo Koch, Ricardo Salvador, Giulio Ruffini, Giulia Sprugnoli, Simone Rossi, Emiliano Santarnecchi
{"title":"40 Hz伽玛tACS诱导双侧背外侧前额皮质局部和分布的fMRI变化:一项初步研究。","authors":"Lucia Mencarelli,&nbsp;Lucia Monti,&nbsp;Sara Romanella,&nbsp;Francesco Neri,&nbsp;Giacomo Koch,&nbsp;Ricardo Salvador,&nbsp;Giulio Ruffini,&nbsp;Giulia Sprugnoli,&nbsp;Simone Rossi,&nbsp;Emiliano Santarnecchi","doi":"10.1155/2022/6197505","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (<i>γ</i>) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308536/pdf/","citationCount":"2","resultStr":"{\"title\":\"Local and Distributed fMRI Changes Induced by 40 Hz Gamma tACS of the Bilateral Dorsolateral Prefrontal Cortex: A Pilot Study.\",\"authors\":\"Lucia Mencarelli,&nbsp;Lucia Monti,&nbsp;Sara Romanella,&nbsp;Francesco Neri,&nbsp;Giacomo Koch,&nbsp;Ricardo Salvador,&nbsp;Giulio Ruffini,&nbsp;Giulia Sprugnoli,&nbsp;Simone Rossi,&nbsp;Emiliano Santarnecchi\",\"doi\":\"10.1155/2022/6197505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (<i>γ</i>) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.</p>\",\"PeriodicalId\":19122,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308536/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6197505\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/6197505","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

摘要

在过去的几年中,通过经颅交流电刺激(tACS)调节伽马(γ)带快速脑振荡活动的可能性已经在认知增强和治疗方案的背景下进行了讨论。然而,tACS靶向运动皮层外区域的作用及其空间特异性尚不清楚。在这里,我们提出了一项并行的tac - fmri块设计研究,以表征40 Hz tac对健康受试者左右背外侧前额叶皮层(DLPFC)的影响。结果表明,靶双侧dlpfc以及受生物物理模型影响的周围脑区,即运动前皮层和前扣带皮层(ACC)的血氧水平依赖性(BOLD)活性增加。然而,也观察到脱靶效应,主要涉及视觉皮质,并进一步影响辅助运动区(SMA),左侧属下扣带和右侧颞上回。在未来的研究中,特别是在最近推广的神经退行性疾病的伽马诱导治疗方案中,应考虑40 Hz tACS对双侧DLPFC的特异性和网络水平效应的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local and Distributed fMRI Changes Induced by 40 Hz Gamma tACS of the Bilateral Dorsolateral Prefrontal Cortex: A Pilot Study.

Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (γ) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Plasticity
Neural Plasticity Neuroscience-Neurology
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
期刊最新文献
Modulation of High-Frequency rTMS on Reward Circuitry in Individuals with Nicotine Dependence: A Preliminary fMRI Study. Identifying ADHD-Related Abnormal Functional Connectivity with a Graph Convolutional Neural Network The Application of tDCS to Treat Pain and Psychocognitive Symptoms in Cancer Patients: A Scoping Review Clinical Comparison between HD-tDCS and tDCS for Improving Upper Limb Motor Function: A Randomized, Double-Blinded, Sham-Controlled Trial The Alterations in the Brain Corresponding to Low Back Pain: Recent Insights and Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1