Zhihua Xie , Lin Lu (吕林) , Thorsten Stoesser , Jian-guo Lin (林建国) , Dimitrios Pavlidis , Pablo Salinas , Christopher C. Pain , Omar K. Matar
{"title":"三维破碎波及其与垂直圆柱相互作用的数值模拟","authors":"Zhihua Xie , Lin Lu (吕林) , Thorsten Stoesser , Jian-guo Lin (林建国) , Dimitrios Pavlidis , Pablo Salinas , Christopher C. Pain , Omar K. Matar","doi":"10.1016/S1001-6058(16)60791-6","DOIUrl":null,"url":null,"abstract":"<div><p>Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a “volume of fluid” type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.</p></div>","PeriodicalId":66131,"journal":{"name":"水动力学研究与进展:英文版","volume":"29 5","pages":"Pages 800-804"},"PeriodicalIF":3.4000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60791-6","citationCount":"11","resultStr":"{\"title\":\"Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder\",\"authors\":\"Zhihua Xie , Lin Lu (吕林) , Thorsten Stoesser , Jian-guo Lin (林建国) , Dimitrios Pavlidis , Pablo Salinas , Christopher C. Pain , Omar K. Matar\",\"doi\":\"10.1016/S1001-6058(16)60791-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a “volume of fluid” type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.</p></div>\",\"PeriodicalId\":66131,\"journal\":{\"name\":\"水动力学研究与进展:英文版\",\"volume\":\"29 5\",\"pages\":\"Pages 800-804\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60791-6\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"水动力学研究与进展:英文版\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001605816607916\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"水动力学研究与进展:英文版","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001605816607916","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder
Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a “volume of fluid” type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.