哺乳动物和鱼类的垂体多激素细胞:历史、起源和作用

IF 6.5 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Frontiers in Neuroendocrinology Pub Date : 2022-10-01 DOI:10.1016/j.yfrne.2022.101018
Romain Fontaine, Muhammad Rahmad Royan, Christiaan Henkel, Kjetil Hodne, Eirill Ager-Wick, Finn-Arne Weltzien
{"title":"哺乳动物和鱼类的垂体多激素细胞:历史、起源和作用","authors":"Romain Fontaine,&nbsp;Muhammad Rahmad Royan,&nbsp;Christiaan Henkel,&nbsp;Kjetil Hodne,&nbsp;Eirill Ager-Wick,&nbsp;Finn-Arne Weltzien","doi":"10.1016/j.yfrne.2022.101018","DOIUrl":null,"url":null,"abstract":"<div><p>The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant “one cell, one hormone” model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.</p></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"67 ","pages":"Article 101018"},"PeriodicalIF":6.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0091302222000413/pdfft?md5=16eac614df2e9ff2b812f311db8f7f23&pid=1-s2.0-S0091302222000413-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Pituitary multi-hormone cells in mammals and fish: history, origin, and roles\",\"authors\":\"Romain Fontaine,&nbsp;Muhammad Rahmad Royan,&nbsp;Christiaan Henkel,&nbsp;Kjetil Hodne,&nbsp;Eirill Ager-Wick,&nbsp;Finn-Arne Weltzien\",\"doi\":\"10.1016/j.yfrne.2022.101018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant “one cell, one hormone” model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.</p></div>\",\"PeriodicalId\":12469,\"journal\":{\"name\":\"Frontiers in Neuroendocrinology\",\"volume\":\"67 \",\"pages\":\"Article 101018\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0091302222000413/pdfft?md5=16eac614df2e9ff2b812f311db8f7f23&pid=1-s2.0-S0091302222000413-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0091302222000413\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091302222000413","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 1

摘要

脊椎动物的垂体是一个动态的器官,能够根据不同的生理需求调节其激素分泌。在这种背景下,内分泌学家在过去的40年里一直在争论内分泌细胞是单激素还是多激素。自建立以来,占主导地位的“一细胞一激素”模式不断受到挑战。在哺乳动物中,使用先进的多重染色方法、敏感的基因表达技术和对肿瘤组织的分析,有助于快速证明垂体多激素细胞的存在。然而,在鱼类中,只有最近在成像和转录组学方面的进展才使鉴定这些细胞成为可能。在这篇综述中,我们首先描述了在哺乳动物和鱼类中发现产生多种激素的细胞的历史。我们讨论了导致不确定性和争论的技术限制。然后,我们介绍了关于它们的起源和生物学作用的现有知识和假设,从而对垂体可塑性进行了全面的回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pituitary multi-hormone cells in mammals and fish: history, origin, and roles

The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant “one cell, one hormone” model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neuroendocrinology
Frontiers in Neuroendocrinology 医学-内分泌学与代谢
CiteScore
13.30
自引率
6.80%
发文量
62
审稿时长
68 days
期刊介绍: Frontiers in Neuroendocrinology (FIN) publishes a wide range of informative articles including comprehensive reviews, systematic reviews, opinion pieces, and meta-analyses. While the majority of reviews are invited, we also embrace unsolicited reviews and meta-analyses, as well as proposals for thematic special issues, provided they meet our rigorous quality standards. In addition, we encourage authors to submit commentaries that concisely present fresh ideas or offer further analysis to delve deeper into the implications of an article published in our journal.
期刊最新文献
Unraveling sex differences in maternal and paternal care impacts on social behaviors and neurobiological responses to early-life adversity. Insulin-like growth factor-1 and cognitive health: Exploring cellular, preclinical, and clinical dimensions Progestagens and progesterone receptor modulation: Effects on the brain, mood, stress, and cognition in females Editorial Board Effect of 5-alpha reductase inhibitors in animal models of Parkinson’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1