bHLHDB:基于深度学习模型的新一代基本螺旋环螺旋转录因子数据库。

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Bioinformatics and Computational Biology Pub Date : 2022-08-01 Epub Date: 2022-07-25 DOI:10.1142/S0219720022500147
Ali Burak Öncül, Yüksel Çelik, Necdet Mehmet Ünel, Mehmet Cengiz Baloglu
{"title":"bHLHDB:基于深度学习模型的新一代基本螺旋环螺旋转录因子数据库。","authors":"Ali Burak Öncül,&nbsp;Yüksel Çelik,&nbsp;Necdet Mehmet Ünel,&nbsp;Mehmet Cengiz Baloglu","doi":"10.1142/S0219720022500147","DOIUrl":null,"url":null,"abstract":"<p><p>The basic helix loop helix (bHLH) superfamily is a large and diverse protein family that plays a role in various vital functions in nearly all animals and plants. The bHLH proteins form one of the largest families of transcription factors found in plants that act as homo- or heterodimers to regulate the expression of their target genes. The bHLH transcription factor is involved in many aspects of plant development and metabolism, including photomorphogenesis, light signal transduction, secondary metabolism, and stress response. The amount of molecular data has increased dramatically with the development of high-throughput techniques and wide use of bioinformatics techniques. The most efficient way to use this information is to store and analyze the data in a well-organized manner. In this study, all members of the bHLH superfamily in the plant kingdom were used to develop and implement a relational database. We have created a database called bHLHDB (www.bhlhdb.org) for the bHLH family members on which queries can be conducted based on the family or sequences information. The Hidden Markov Model (HMM), which is frequently used by researchers for the analysis of sequences, and the BLAST query were integrated into the database. In addition, the deep learning model was developed to predict the type of TF with only the protein sequence quickly, efficiently, and with 97.54% accuracy and 97.76% precision. We created a unique and next-generation database for bHLH transcription factors and made this database available to the world of science. We believe that the database will be a valuable tool in future studies of the bHLH family.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"bHLHDB: A next generation database of basic helix loop helix transcription factors based on deep learning model.\",\"authors\":\"Ali Burak Öncül,&nbsp;Yüksel Çelik,&nbsp;Necdet Mehmet Ünel,&nbsp;Mehmet Cengiz Baloglu\",\"doi\":\"10.1142/S0219720022500147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The basic helix loop helix (bHLH) superfamily is a large and diverse protein family that plays a role in various vital functions in nearly all animals and plants. The bHLH proteins form one of the largest families of transcription factors found in plants that act as homo- or heterodimers to regulate the expression of their target genes. The bHLH transcription factor is involved in many aspects of plant development and metabolism, including photomorphogenesis, light signal transduction, secondary metabolism, and stress response. The amount of molecular data has increased dramatically with the development of high-throughput techniques and wide use of bioinformatics techniques. The most efficient way to use this information is to store and analyze the data in a well-organized manner. In this study, all members of the bHLH superfamily in the plant kingdom were used to develop and implement a relational database. We have created a database called bHLHDB (www.bhlhdb.org) for the bHLH family members on which queries can be conducted based on the family or sequences information. The Hidden Markov Model (HMM), which is frequently used by researchers for the analysis of sequences, and the BLAST query were integrated into the database. In addition, the deep learning model was developed to predict the type of TF with only the protein sequence quickly, efficiently, and with 97.54% accuracy and 97.76% precision. We created a unique and next-generation database for bHLH transcription factors and made this database available to the world of science. We believe that the database will be a valuable tool in future studies of the bHLH family.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720022500147\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720022500147","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基本螺旋环螺旋(bHLH)超家族是一个庞大而多样的蛋白质家族,在几乎所有动物和植物的各种重要功能中发挥作用。bHLH蛋白是在植物中发现的最大的转录因子家族之一,作为同源或异源二聚体来调节其靶基因的表达。bHLH转录因子参与植物发育和代谢的许多方面,包括光形态发生、光信号转导、次生代谢和胁迫反应。随着高通量技术的发展和生物信息学技术的广泛应用,分子数据的数量急剧增加。使用这些信息的最有效方法是以组织良好的方式存储和分析数据。在这项研究中,利用植物界bHLH超家族的所有成员来开发和实现一个关系数据库。我们为bHLH家族成员创建了一个名为bHLHDB (www.bhlhdb.org)的数据库,可以根据家族或序列信息对其进行查询。将研究人员常用的隐马尔可夫模型(HMM)和BLAST查询集成到数据库中。此外,开发了深度学习模型,可以快速有效地预测仅蛋白质序列的TF类型,准确率为97.54%,精密度为97.76%。我们创建了一个独特的下一代bHLH转录因子数据库,并将该数据库提供给科学界。我们相信该数据库将成为bHLH家族未来研究的一个有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
bHLHDB: A next generation database of basic helix loop helix transcription factors based on deep learning model.

The basic helix loop helix (bHLH) superfamily is a large and diverse protein family that plays a role in various vital functions in nearly all animals and plants. The bHLH proteins form one of the largest families of transcription factors found in plants that act as homo- or heterodimers to regulate the expression of their target genes. The bHLH transcription factor is involved in many aspects of plant development and metabolism, including photomorphogenesis, light signal transduction, secondary metabolism, and stress response. The amount of molecular data has increased dramatically with the development of high-throughput techniques and wide use of bioinformatics techniques. The most efficient way to use this information is to store and analyze the data in a well-organized manner. In this study, all members of the bHLH superfamily in the plant kingdom were used to develop and implement a relational database. We have created a database called bHLHDB (www.bhlhdb.org) for the bHLH family members on which queries can be conducted based on the family or sequences information. The Hidden Markov Model (HMM), which is frequently used by researchers for the analysis of sequences, and the BLAST query were integrated into the database. In addition, the deep learning model was developed to predict the type of TF with only the protein sequence quickly, efficiently, and with 97.54% accuracy and 97.76% precision. We created a unique and next-generation database for bHLH transcription factors and made this database available to the world of science. We believe that the database will be a valuable tool in future studies of the bHLH family.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
期刊最新文献
Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1