{"title":"新热带蝴蝶染色体倒位的双重博弈。","authors":"Paul Jay, Mathieu Joron","doi":"10.5802/crbiol.73","DOIUrl":null,"url":null,"abstract":"<p><p>Over a century after the first description of a polymorphism controlled by a supergene, these genetic architectures still puzzle biologists. Supergenes are groups of tightly linked loci facilitating the co-segregation of combinations of alleles underlying alternative, complex adaptive strategies. The suppression of recombination at supergenes is generally caused by polymorphic chromosomal rearrangements, such as inversions. The existence of inversion polymorphisms and supergene raises theoretical and empirical questions. Why do these architectures evolve? How can alternative combinations of alleles be formed? How and why is polymorphism maintained? The purpose of this paper is to provide answers to these questions by reviewing recent advances in the study of Heliconius numata, an Amazonian butterfly displaying a striking diversity of wing color patterns. In a broad context, this review highlights mechanisms that play an important role in the evolution of new genomic architecture and in the adaptation of species.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The double game of chromosomal inversions in a neotropical butterfly.\",\"authors\":\"Paul Jay, Mathieu Joron\",\"doi\":\"10.5802/crbiol.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over a century after the first description of a polymorphism controlled by a supergene, these genetic architectures still puzzle biologists. Supergenes are groups of tightly linked loci facilitating the co-segregation of combinations of alleles underlying alternative, complex adaptive strategies. The suppression of recombination at supergenes is generally caused by polymorphic chromosomal rearrangements, such as inversions. The existence of inversion polymorphisms and supergene raises theoretical and empirical questions. Why do these architectures evolve? How can alternative combinations of alleles be formed? How and why is polymorphism maintained? The purpose of this paper is to provide answers to these questions by reviewing recent advances in the study of Heliconius numata, an Amazonian butterfly displaying a striking diversity of wing color patterns. In a broad context, this review highlights mechanisms that play an important role in the evolution of new genomic architecture and in the adaptation of species.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5802/crbiol.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5802/crbiol.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The double game of chromosomal inversions in a neotropical butterfly.
Over a century after the first description of a polymorphism controlled by a supergene, these genetic architectures still puzzle biologists. Supergenes are groups of tightly linked loci facilitating the co-segregation of combinations of alleles underlying alternative, complex adaptive strategies. The suppression of recombination at supergenes is generally caused by polymorphic chromosomal rearrangements, such as inversions. The existence of inversion polymorphisms and supergene raises theoretical and empirical questions. Why do these architectures evolve? How can alternative combinations of alleles be formed? How and why is polymorphism maintained? The purpose of this paper is to provide answers to these questions by reviewing recent advances in the study of Heliconius numata, an Amazonian butterfly displaying a striking diversity of wing color patterns. In a broad context, this review highlights mechanisms that play an important role in the evolution of new genomic architecture and in the adaptation of species.