透明质酸和氧化锌凝胶的体外药物释放和细胞毒性研究。

IF 1.8 4区 化学 Q3 POLYMER SCIENCE Designed Monomers and Polymers Pub Date : 2022-07-24 eCollection Date: 2022-01-01 DOI:10.1080/15685551.2022.2099647
Jaahnavi Lanka, Santhosh Kumar, Mohana Kumar B, Shama Rao, Shivaprasad Gadag, Usha Y Nayak
{"title":"透明质酸和氧化锌凝胶的体外药物释放和细胞毒性研究。","authors":"Jaahnavi Lanka,&nbsp;Santhosh Kumar,&nbsp;Mohana Kumar B,&nbsp;Shama Rao,&nbsp;Shivaprasad Gadag,&nbsp;Usha Y Nayak","doi":"10.1080/15685551.2022.2099647","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronic acid (HA) is a naturally occurring biopolymer, with a remarkable wound healing property. Zinc-oxide non-eugenol is a material widely used for periodontal dressing in dentistry. However, it has been reported that zinc oxide non-eugenol is toxic to osteoblasts and fibroblasts. Hence, the present study aimed to evaluate the drug release and cytotoxicity of HA and zinc-oxide gels. Hydrogels of HA and zinc oxide were formulated with carbopol as a carrier. <i>In vitro</i> drug release was performed by UV spectrophotometry, dialysis, and vial bag methods. Cytotoxicity assessment of HA and zinc-oxide gels was performed in human periodontal ligament fibroblasts (HPdLF) and human gingival fibroblasts (hGFs). An inverted phase-contrast microscope was used to assess the morphological changes. At 24 and 48 hr, HPdLF cells showed the highest viability in 0.1% low molecular weight-HA (LMW-HA) with a median value of 131.9, and hGFs showed the highest viability in 5% LMW-HA with a median of 129.56. The highest viability of HPdLF cells was observed in 5% high molecular weight-HA (HMW-HA), with a median value of 127.11. hGFs showed the highest viability in 1% HMW-HA with a median value of 97.99. Within the limitations of the present study, we concluded that LMW-HA is more efficient than HMW-HA. Both HPdLF and hGF cells showed complete cell morbidity with zinc-oxide hydrogels. Therefore, zinc oxide-based gels in concentrations as low as 9% could be toxic intraorally to soft tissues that harbor gingival and periodontal ligament fibroblasts.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9327778/pdf/","citationCount":"2","resultStr":"{\"title\":\"Drug Release and Cytotoxicity of Hyaluronic Acid and Zinc Oxide Gels, An In-Vitro Study.\",\"authors\":\"Jaahnavi Lanka,&nbsp;Santhosh Kumar,&nbsp;Mohana Kumar B,&nbsp;Shama Rao,&nbsp;Shivaprasad Gadag,&nbsp;Usha Y Nayak\",\"doi\":\"10.1080/15685551.2022.2099647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyaluronic acid (HA) is a naturally occurring biopolymer, with a remarkable wound healing property. Zinc-oxide non-eugenol is a material widely used for periodontal dressing in dentistry. However, it has been reported that zinc oxide non-eugenol is toxic to osteoblasts and fibroblasts. Hence, the present study aimed to evaluate the drug release and cytotoxicity of HA and zinc-oxide gels. Hydrogels of HA and zinc oxide were formulated with carbopol as a carrier. <i>In vitro</i> drug release was performed by UV spectrophotometry, dialysis, and vial bag methods. Cytotoxicity assessment of HA and zinc-oxide gels was performed in human periodontal ligament fibroblasts (HPdLF) and human gingival fibroblasts (hGFs). An inverted phase-contrast microscope was used to assess the morphological changes. At 24 and 48 hr, HPdLF cells showed the highest viability in 0.1% low molecular weight-HA (LMW-HA) with a median value of 131.9, and hGFs showed the highest viability in 5% LMW-HA with a median of 129.56. The highest viability of HPdLF cells was observed in 5% high molecular weight-HA (HMW-HA), with a median value of 127.11. hGFs showed the highest viability in 1% HMW-HA with a median value of 97.99. Within the limitations of the present study, we concluded that LMW-HA is more efficient than HMW-HA. Both HPdLF and hGF cells showed complete cell morbidity with zinc-oxide hydrogels. Therefore, zinc oxide-based gels in concentrations as low as 9% could be toxic intraorally to soft tissues that harbor gingival and periodontal ligament fibroblasts.</p>\",\"PeriodicalId\":11170,\"journal\":{\"name\":\"Designed Monomers and Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9327778/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designed Monomers and Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/15685551.2022.2099647\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2022.2099647","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 2

摘要

透明质酸(HA)是一种天然存在的生物聚合物,具有显著的伤口愈合性能。氧化锌非丁香酚是一种广泛应用于牙周敷料的材料。然而,有报道称氧化锌非丁香酚对成骨细胞和成纤维细胞有毒性。因此,本研究旨在评价透明质酸和氧化锌凝胶的药物释放和细胞毒性。以卡波醇为载体,配制了透明质酸和氧化锌的水凝胶。采用紫外分光光度法、透析法和小瓶袋法进行体外释药。研究了羟基磷灰石和氧化锌凝胶对人牙周韧带成纤维细胞(HPdLF)和牙龈成纤维细胞(hGFs)的细胞毒性。倒置相衬显微镜观察形态学变化。在24和48小时,HPdLF细胞在0.1%低分子量ha (LMW-HA)中表现出最高的活力,中位数为131.9;hGFs在5%低分子量ha中表现出最高的活力,中位数为129.56。高分子量ha (HMW-HA)浓度为5%时,HPdLF细胞活力最高,中位数为127.11。在1%的HMW-HA中,hgf的活力最高,中位数为97.99。在本研究的限制下,我们得出结论,低分子量ha比低分子量ha更有效。在氧化锌水凝胶作用下,HPdLF和hGF细胞均表现出完全的细胞发病率。因此,浓度低至9%的氧化锌凝胶可能对含有牙龈和牙周韧带成纤维细胞的软组织有毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drug Release and Cytotoxicity of Hyaluronic Acid and Zinc Oxide Gels, An In-Vitro Study.

Hyaluronic acid (HA) is a naturally occurring biopolymer, with a remarkable wound healing property. Zinc-oxide non-eugenol is a material widely used for periodontal dressing in dentistry. However, it has been reported that zinc oxide non-eugenol is toxic to osteoblasts and fibroblasts. Hence, the present study aimed to evaluate the drug release and cytotoxicity of HA and zinc-oxide gels. Hydrogels of HA and zinc oxide were formulated with carbopol as a carrier. In vitro drug release was performed by UV spectrophotometry, dialysis, and vial bag methods. Cytotoxicity assessment of HA and zinc-oxide gels was performed in human periodontal ligament fibroblasts (HPdLF) and human gingival fibroblasts (hGFs). An inverted phase-contrast microscope was used to assess the morphological changes. At 24 and 48 hr, HPdLF cells showed the highest viability in 0.1% low molecular weight-HA (LMW-HA) with a median value of 131.9, and hGFs showed the highest viability in 5% LMW-HA with a median of 129.56. The highest viability of HPdLF cells was observed in 5% high molecular weight-HA (HMW-HA), with a median value of 127.11. hGFs showed the highest viability in 1% HMW-HA with a median value of 97.99. Within the limitations of the present study, we concluded that LMW-HA is more efficient than HMW-HA. Both HPdLF and hGF cells showed complete cell morbidity with zinc-oxide hydrogels. Therefore, zinc oxide-based gels in concentrations as low as 9% could be toxic intraorally to soft tissues that harbor gingival and periodontal ligament fibroblasts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
期刊最新文献
Synthesis and properties of bio-based semi-aromatic heat-resistant copolymer polyamide 5T-co-6T. Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters. The effect of polycarboxylate superplasticizer on the strength and hydration performance of alkali slag building materials. Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg+2 sensor. Cyclodextrin-grafted redox-responsive hydrogel mediated by disulfide bridges for regulated drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1