检测基于智能手表的行为变化,以应对多领域脑健康干预。

ACM transactions on computing for healthcare Pub Date : 2022-07-01 Epub Date: 2022-04-07 DOI:10.1145/3508020
Diane J Cook, Miranda Strickland, Maureen Schmitter-Edgecombe
{"title":"检测基于智能手表的行为变化,以应对多领域脑健康干预。","authors":"Diane J Cook, Miranda Strickland, Maureen Schmitter-Edgecombe","doi":"10.1145/3508020","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce and validate a computational method to detect lifestyle change that occurs in response to a multi-domain healthy brain aging intervention. To detect behavior change, digital behavior markers (DM) are extracted from smartwatch sensor data and a Permutation-based Change Detection (PCD) algorithm quantifies the change in marker-based behavior from a pre-intervention, one-week baseline. To validate the method, we verify that changes are successfully detected from synthetic data with known pattern differences. Next, we employ this method to detect overall behavior change for n=28 BHI subjects and n=17 age-matched control subjects. For these individuals, we observe a monotonic increase in behavior change from the baseline week with a slope of 0.7460 for the intervention group and a slope of 0.0230 for the control group. Finally, we utilize a random forest algorithm to perform leave-one-subject-out prediction of intervention versus control subjects based on digital marker delta values. The random forest predicts whether the subject is in the intervention or control group with an accuracy of 0.87. This work has implications for capturing objective, continuous data to inform our understanding of intervention adoption and impact.</p>","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268550/pdf/nihms-1768502.pdf","citationCount":"0","resultStr":"{\"title\":\"Detecting Smartwatch-based Behavior Change in Response to a Multi-domain Brain Health Intervention.\",\"authors\":\"Diane J Cook, Miranda Strickland, Maureen Schmitter-Edgecombe\",\"doi\":\"10.1145/3508020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we introduce and validate a computational method to detect lifestyle change that occurs in response to a multi-domain healthy brain aging intervention. To detect behavior change, digital behavior markers (DM) are extracted from smartwatch sensor data and a Permutation-based Change Detection (PCD) algorithm quantifies the change in marker-based behavior from a pre-intervention, one-week baseline. To validate the method, we verify that changes are successfully detected from synthetic data with known pattern differences. Next, we employ this method to detect overall behavior change for n=28 BHI subjects and n=17 age-matched control subjects. For these individuals, we observe a monotonic increase in behavior change from the baseline week with a slope of 0.7460 for the intervention group and a slope of 0.0230 for the control group. Finally, we utilize a random forest algorithm to perform leave-one-subject-out prediction of intervention versus control subjects based on digital marker delta values. The random forest predicts whether the subject is in the intervention or control group with an accuracy of 0.87. This work has implications for capturing objective, continuous data to inform our understanding of intervention adoption and impact.</p>\",\"PeriodicalId\":72043,\"journal\":{\"name\":\"ACM transactions on computing for healthcare\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268550/pdf/nihms-1768502.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM transactions on computing for healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们引入并验证了一种计算方法,用于检测多领域健康脑老龄化干预所带来的生活方式变化。为了检测行为变化,我们从智能手表传感器数据中提取了数字行为标记(DM),并采用基于置换的变化检测(PCD)算法量化了与干预前一周基线相比基于标记的行为变化。为了验证该方法,我们验证了从已知模式差异的合成数据中成功检测出变化。接下来,我们采用这种方法检测了 28 名 BHI 受试者和 17 名年龄匹配的对照组受试者的整体行为变化。对于这些受试者,我们观察到行为变化从基线周开始单调增长,干预组的斜率为 0.7460,对照组的斜率为 0.0230。最后,我们利用随机森林算法,根据数字标记德尔塔值,对干预组和对照组受试者进行 "一例淘汰"(leave-one-subject-out)预测。随机森林预测受试者属于干预组还是对照组的准确率为 0.87。这项工作对获取客观、连续的数据以帮助我们了解干预措施的采用和影响具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Smartwatch-based Behavior Change in Response to a Multi-domain Brain Health Intervention.

In this study, we introduce and validate a computational method to detect lifestyle change that occurs in response to a multi-domain healthy brain aging intervention. To detect behavior change, digital behavior markers (DM) are extracted from smartwatch sensor data and a Permutation-based Change Detection (PCD) algorithm quantifies the change in marker-based behavior from a pre-intervention, one-week baseline. To validate the method, we verify that changes are successfully detected from synthetic data with known pattern differences. Next, we employ this method to detect overall behavior change for n=28 BHI subjects and n=17 age-matched control subjects. For these individuals, we observe a monotonic increase in behavior change from the baseline week with a slope of 0.7460 for the intervention group and a slope of 0.0230 for the control group. Finally, we utilize a random forest algorithm to perform leave-one-subject-out prediction of intervention versus control subjects based on digital marker delta values. The random forest predicts whether the subject is in the intervention or control group with an accuracy of 0.87. This work has implications for capturing objective, continuous data to inform our understanding of intervention adoption and impact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1