{"title":"欧米茄变种对韩国 COVID-19 情况影响的数学建模。","authors":"Jooha Oh, Catherine Apio, Taesung Park","doi":"10.5808/gi.22025","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of newer coronavirus disease 2019 (COVID-19) variants has brought a challenge to ending the spread of COVID-19. The variants have a different fatality, morbidity, and transmission rates and affect vaccine efficacy differently. Therefore, the impact of each new variant on the spread of COVID-19 is of interest to governments and scientists. Here, we proposed mathematical SEIQRDVP and SEIQRDV3P models to predict the impact of the Omicron variant on the spread of the COVID-19 situation in South Korea. SEIQEDVP considers one vaccine level at a time while SEIQRDV3P considers three vaccination levels (only one dose received, full doses received, and full doses + booster shots received) simultaneously. The omicron variant's effect was contemplated as a weighted sum of the delta and omicron variants' transmission rate and tuned using a hyperparameter k. Our models' performances were compared with common models like SEIR, SEIQR, and SEIQRDVUP using the root mean square error (RMSE). SEIQRDV3P performed better than the SEIQRDVP model. Without consideration of the variant effect, we don't see a rapid rise in COVID-19 cases and high RMSE values. But, with consideration of the omicron variant, we predicted a continuous rapid rise in COVID-19 cases until maybe herd immunity is developed in the population. Also, the RMSE value for the SEIQRDV3P model decreased by 27.4%. Therefore, modeling the impact of any new risen variant is crucial in determining the trajectory of the spread of COVID-19 and determining policies to be implemented.</p>","PeriodicalId":36591,"journal":{"name":"Genomics and Informatics","volume":"20 2","pages":"e22"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299565/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of the impact of Omicron variant on the COVID-19 situation in South Korea.\",\"authors\":\"Jooha Oh, Catherine Apio, Taesung Park\",\"doi\":\"10.5808/gi.22025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise of newer coronavirus disease 2019 (COVID-19) variants has brought a challenge to ending the spread of COVID-19. The variants have a different fatality, morbidity, and transmission rates and affect vaccine efficacy differently. Therefore, the impact of each new variant on the spread of COVID-19 is of interest to governments and scientists. Here, we proposed mathematical SEIQRDVP and SEIQRDV3P models to predict the impact of the Omicron variant on the spread of the COVID-19 situation in South Korea. SEIQEDVP considers one vaccine level at a time while SEIQRDV3P considers three vaccination levels (only one dose received, full doses received, and full doses + booster shots received) simultaneously. The omicron variant's effect was contemplated as a weighted sum of the delta and omicron variants' transmission rate and tuned using a hyperparameter k. Our models' performances were compared with common models like SEIR, SEIQR, and SEIQRDVUP using the root mean square error (RMSE). SEIQRDV3P performed better than the SEIQRDVP model. Without consideration of the variant effect, we don't see a rapid rise in COVID-19 cases and high RMSE values. But, with consideration of the omicron variant, we predicted a continuous rapid rise in COVID-19 cases until maybe herd immunity is developed in the population. Also, the RMSE value for the SEIQRDV3P model decreased by 27.4%. Therefore, modeling the impact of any new risen variant is crucial in determining the trajectory of the spread of COVID-19 and determining policies to be implemented.</p>\",\"PeriodicalId\":36591,\"journal\":{\"name\":\"Genomics and Informatics\",\"volume\":\"20 2\",\"pages\":\"e22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299565/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5808/gi.22025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5808/gi.22025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Mathematical modeling of the impact of Omicron variant on the COVID-19 situation in South Korea.
The rise of newer coronavirus disease 2019 (COVID-19) variants has brought a challenge to ending the spread of COVID-19. The variants have a different fatality, morbidity, and transmission rates and affect vaccine efficacy differently. Therefore, the impact of each new variant on the spread of COVID-19 is of interest to governments and scientists. Here, we proposed mathematical SEIQRDVP and SEIQRDV3P models to predict the impact of the Omicron variant on the spread of the COVID-19 situation in South Korea. SEIQEDVP considers one vaccine level at a time while SEIQRDV3P considers three vaccination levels (only one dose received, full doses received, and full doses + booster shots received) simultaneously. The omicron variant's effect was contemplated as a weighted sum of the delta and omicron variants' transmission rate and tuned using a hyperparameter k. Our models' performances were compared with common models like SEIR, SEIQR, and SEIQRDVUP using the root mean square error (RMSE). SEIQRDV3P performed better than the SEIQRDVP model. Without consideration of the variant effect, we don't see a rapid rise in COVID-19 cases and high RMSE values. But, with consideration of the omicron variant, we predicted a continuous rapid rise in COVID-19 cases until maybe herd immunity is developed in the population. Also, the RMSE value for the SEIQRDV3P model decreased by 27.4%. Therefore, modeling the impact of any new risen variant is crucial in determining the trajectory of the spread of COVID-19 and determining policies to be implemented.