小样本量聚类数据的秩相关推断。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-08-01 Epub Date: 2022-01-12 DOI:10.1111/stan.12261
Sally Hunsberger, Lori Long, Sarah E Reese, Gloria H Hong, Ian A Myles, Christa S Zerbe, Pleonchan Chetchotisakd, Joanna H Shih
{"title":"小样本量聚类数据的秩相关推断。","authors":"Sally Hunsberger,&nbsp;Lori Long,&nbsp;Sarah E Reese,&nbsp;Gloria H Hong,&nbsp;Ian A Myles,&nbsp;Christa S Zerbe,&nbsp;Pleonchan Chetchotisakd,&nbsp;Joanna H Shih","doi":"10.1111/stan.12261","DOIUrl":null,"url":null,"abstract":"<p><p>This paper develops methods to test for associations between two variables with clustered data using a <i>U</i>-Statistic approach with a second-order approximation to the variance of the parameter estimate for the test statistic. The tests that are presented are for clustered versions of: Pearsons <i>χ</i> <sup>2</sup> test, the Spearman rank correlation and Kendall's <i>τ</i> for continuous data or ordinal data and for alternative measures of Kendall's <i>τ</i> that allow for ties in the data. Shih and Fay use the <i>U</i>-Statistic approach but only consider a first-order approximation. The first-order approximation has inflated significance level in scenarios with small sample sizes. We derive the test statistics using the second-order approximations aiming to improve the type I error rates. The method applies to data where clusters have the same number of measurements for each variable or where one of the variables may be measured once per cluster while the other variable may be measured multiple times. We evaluate the performance of the test statistics through simulation with small sample sizes. The methods are all available in the R package cluscor.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355045/pdf/nihms-1774814.pdf","citationCount":"0","resultStr":"{\"title\":\"Rank correlation inferences for clustered data with small sample size.\",\"authors\":\"Sally Hunsberger,&nbsp;Lori Long,&nbsp;Sarah E Reese,&nbsp;Gloria H Hong,&nbsp;Ian A Myles,&nbsp;Christa S Zerbe,&nbsp;Pleonchan Chetchotisakd,&nbsp;Joanna H Shih\",\"doi\":\"10.1111/stan.12261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper develops methods to test for associations between two variables with clustered data using a <i>U</i>-Statistic approach with a second-order approximation to the variance of the parameter estimate for the test statistic. The tests that are presented are for clustered versions of: Pearsons <i>χ</i> <sup>2</sup> test, the Spearman rank correlation and Kendall's <i>τ</i> for continuous data or ordinal data and for alternative measures of Kendall's <i>τ</i> that allow for ties in the data. Shih and Fay use the <i>U</i>-Statistic approach but only consider a first-order approximation. The first-order approximation has inflated significance level in scenarios with small sample sizes. We derive the test statistics using the second-order approximations aiming to improve the type I error rates. The method applies to data where clusters have the same number of measurements for each variable or where one of the variables may be measured once per cluster while the other variable may be measured multiple times. We evaluate the performance of the test statistics through simulation with small sample sizes. The methods are all available in the R package cluscor.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355045/pdf/nihms-1774814.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12261\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12261","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文开发的方法,以检验两个变量之间的关联与聚类数据使用u -统计方法与二阶近似的方差估计参数的检验统计量。所提供的检验是针对以下聚类版本的检验:连续数据或有序数据的皮尔逊χ 2检验、斯皮尔曼等级相关性和肯德尔τ,以及允许数据中存在联系的肯德尔τ的替代度量。Shih和Fay使用u统计方法,但只考虑一阶近似。在小样本量的情况下,一阶近似具有膨胀的显著性水平。我们使用二阶近似来推导测试统计量,旨在提高I型错误率。该方法适用于集群对每个变量具有相同数量的测量的数据,或者其中一个变量可能每个集群测量一次,而另一个变量可能被测量多次的数据。我们通过小样本量的模拟来评估测试统计量的性能。这些方法都可以在R包分类中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rank correlation inferences for clustered data with small sample size.

This paper develops methods to test for associations between two variables with clustered data using a U-Statistic approach with a second-order approximation to the variance of the parameter estimate for the test statistic. The tests that are presented are for clustered versions of: Pearsons χ 2 test, the Spearman rank correlation and Kendall's τ for continuous data or ordinal data and for alternative measures of Kendall's τ that allow for ties in the data. Shih and Fay use the U-Statistic approach but only consider a first-order approximation. The first-order approximation has inflated significance level in scenarios with small sample sizes. We derive the test statistics using the second-order approximations aiming to improve the type I error rates. The method applies to data where clusters have the same number of measurements for each variable or where one of the variables may be measured once per cluster while the other variable may be measured multiple times. We evaluate the performance of the test statistics through simulation with small sample sizes. The methods are all available in the R package cluscor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1