优化辅助甲状腺检测和分类框架:一种新的集成技术

IF 1 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Gene Expression Patterns Pub Date : 2022-09-01 DOI:10.1016/j.gep.2022.119268
Rajole Bhausaheb Namdeo , Gond Vitthal Janardan
{"title":"优化辅助甲状腺检测和分类框架:一种新的集成技术","authors":"Rajole Bhausaheb Namdeo ,&nbsp;Gond Vitthal Janardan","doi":"10.1016/j.gep.2022.119268","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasound (US) is an inexpensive and non-invasive technique for capturing the image of the thyroid gland and nearby tissue. The classification and detection of thyroid disorders is still in its infant stage. This study aims to present a new thyroid diagnosis approach, which consists of three phases like “(i) feature extraction, (ii) feature dimensionality reduction, and (iii) classification”. Initially, the thyroid images as well as its related data are given as input. From the input image, the features such as“ Grey Level Co-occurrence Matrix(GLCM), Grey level Run Length Matrix(GLRM), proposed Local Binary Pattern(LBP), and Local Tetra Patterns (LTrP)” are extracted. Meanwhile, from the input data, the higher-order statistical features like skewness, kurtosis<span><span>, entropy, as well as moment get retrieved. Consequently, the Linear Discriminant Analysis (LDA) based dimensionality reduction is processed to resolve the problem of “curse of dimensionality”. Finally, the classification is carried out via two phases: Image features are classified using an ensemble classifier that includes Support Vector Machine (SVM)&amp; Neural Network(NN) models. The data features are subjected to Recurrent Neural Network(RNN) based classification, which is optimized by an Adaptive Elephant Herding Algorithm (AEHO) via tuning the optimal weight. At last, the performance of the adopted scheme is compared to the extant models in terms of various measures. Especially, the mean value of the suggested RNN + AEHO model is 4.35%, 3.54%, 6.07%, 3.8%, 1.69%, 2.85%, 2.07%, 2.54%, 0.13%, 0.035%, and 8.53% better than the existing CNN, </span>NB<span>, RF, KNN, Levenberg, RNN + EHO, RNN + FF, RNN + WOA, WF-CS, FU-SLnO and HFBO methods respectively.</span></span></p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization assisted framework for thyroid detection and classification: A new ensemble technique\",\"authors\":\"Rajole Bhausaheb Namdeo ,&nbsp;Gond Vitthal Janardan\",\"doi\":\"10.1016/j.gep.2022.119268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrasound (US) is an inexpensive and non-invasive technique for capturing the image of the thyroid gland and nearby tissue. The classification and detection of thyroid disorders is still in its infant stage. This study aims to present a new thyroid diagnosis approach, which consists of three phases like “(i) feature extraction, (ii) feature dimensionality reduction, and (iii) classification”. Initially, the thyroid images as well as its related data are given as input. From the input image, the features such as“ Grey Level Co-occurrence Matrix(GLCM), Grey level Run Length Matrix(GLRM), proposed Local Binary Pattern(LBP), and Local Tetra Patterns (LTrP)” are extracted. Meanwhile, from the input data, the higher-order statistical features like skewness, kurtosis<span><span>, entropy, as well as moment get retrieved. Consequently, the Linear Discriminant Analysis (LDA) based dimensionality reduction is processed to resolve the problem of “curse of dimensionality”. Finally, the classification is carried out via two phases: Image features are classified using an ensemble classifier that includes Support Vector Machine (SVM)&amp; Neural Network(NN) models. The data features are subjected to Recurrent Neural Network(RNN) based classification, which is optimized by an Adaptive Elephant Herding Algorithm (AEHO) via tuning the optimal weight. At last, the performance of the adopted scheme is compared to the extant models in terms of various measures. Especially, the mean value of the suggested RNN + AEHO model is 4.35%, 3.54%, 6.07%, 3.8%, 1.69%, 2.85%, 2.07%, 2.54%, 0.13%, 0.035%, and 8.53% better than the existing CNN, </span>NB<span>, RF, KNN, Levenberg, RNN + EHO, RNN + FF, RNN + WOA, WF-CS, FU-SLnO and HFBO methods respectively.</span></span></p></div>\",\"PeriodicalId\":55598,\"journal\":{\"name\":\"Gene Expression Patterns\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Expression Patterns\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567133X22000382\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X22000382","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

超声(US)是一种廉价和非侵入性的技术,用于捕捉甲状腺和附近组织的图像。甲状腺疾病的分类和检测仍处于初级阶段。本研究旨在提出一种新的甲状腺诊断方法,该方法由“(i)特征提取,(ii)特征降维,(iii)分类”三个阶段组成。首先,给出甲状腺图像及其相关数据作为输入。从输入图像中提取“灰度共生矩阵(GLCM)、灰度运行长度矩阵(GLRM)、建议的局部二值模式(LBP)和局部四元模式(LTrP)”等特征。同时,从输入数据中提取偏度、峰度、熵、矩等高阶统计特征。因此,采用基于线性判别分析(LDA)的降维方法来解决“维数诅咒”问题。最后,通过两个阶段进行分类:使用集成分类器对图像特征进行分类,该分类器包括支持向量机(SVM);神经网络(NN)模型。基于递归神经网络(RNN)对数据特征进行分类,并采用自适应象群算法(AEHO)通过调整最优权值对数据特征进行优化。最后,将所采用方案的性能与现有模型在各项指标上进行了比较。其中,RNN + AEHO模型的均值分别比现有的CNN、NB、RF、KNN、Levenberg、RNN + EHO、RNN + FF、RNN + WOA、WF-CS、FU-SLnO和HFBO方法好4.35%、3.54%、6.07%、3.8%、1.69%、2.85%、2.07%、2.54%、0.13%、0.035%和8.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization assisted framework for thyroid detection and classification: A new ensemble technique

Ultrasound (US) is an inexpensive and non-invasive technique for capturing the image of the thyroid gland and nearby tissue. The classification and detection of thyroid disorders is still in its infant stage. This study aims to present a new thyroid diagnosis approach, which consists of three phases like “(i) feature extraction, (ii) feature dimensionality reduction, and (iii) classification”. Initially, the thyroid images as well as its related data are given as input. From the input image, the features such as“ Grey Level Co-occurrence Matrix(GLCM), Grey level Run Length Matrix(GLRM), proposed Local Binary Pattern(LBP), and Local Tetra Patterns (LTrP)” are extracted. Meanwhile, from the input data, the higher-order statistical features like skewness, kurtosis, entropy, as well as moment get retrieved. Consequently, the Linear Discriminant Analysis (LDA) based dimensionality reduction is processed to resolve the problem of “curse of dimensionality”. Finally, the classification is carried out via two phases: Image features are classified using an ensemble classifier that includes Support Vector Machine (SVM)& Neural Network(NN) models. The data features are subjected to Recurrent Neural Network(RNN) based classification, which is optimized by an Adaptive Elephant Herding Algorithm (AEHO) via tuning the optimal weight. At last, the performance of the adopted scheme is compared to the extant models in terms of various measures. Especially, the mean value of the suggested RNN + AEHO model is 4.35%, 3.54%, 6.07%, 3.8%, 1.69%, 2.85%, 2.07%, 2.54%, 0.13%, 0.035%, and 8.53% better than the existing CNN, NB, RF, KNN, Levenberg, RNN + EHO, RNN + FF, RNN + WOA, WF-CS, FU-SLnO and HFBO methods respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gene Expression Patterns
Gene Expression Patterns 生物-发育生物学
CiteScore
2.30
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include: -In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression -Temporal studies of large gene sets during development -Transgenic studies to study cell lineage in tissue formation
期刊最新文献
Outside Front Cover Editorial Board A great diversity of ROBO4 expression and regulations identified by data mining and transgene mice The expression pattern of Wnt6, Wnt10A, and HOXA13 during regenerating tails of Gekko Japonicus Outside Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1