间充质干细胞分化及其生物技术应用:组织工程和食品制造。

Biomaterials Translational Pub Date : 2022-03-28 eCollection Date: 2022-01-01 DOI:10.12336/biomatertransl.2022.01.003
Dafna Benayahu
{"title":"间充质干细胞分化及其生物技术应用:组织工程和食品制造。","authors":"Dafna Benayahu","doi":"10.12336/biomatertransl.2022.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in the field of stem cell research now enable their utilisation for biotechnology applications in regenerative medicine and food tech. The first use of stem cells as biomedical devices employed a combination of cells and scaffold to restore, improve, or replace damaged tissues and to grow new viable tissue for replacement organs. This approach has also been adopted to replace meat production in the food industry. Mesenchymal stem cells are the source material used to induce cells to differentiate into the desired lineage. These technologies require mass propagation and rely on supplying the regulatory factors that direct differentiation. Mesenchymal stem cells can differentiate into fibroblastic and skeletal cells; fibroblastic/chondrogenic/osteogenic/myogenic and adipogenic lineages. Each differentiation fate requires specific key molecular regulators and appropriate activation conditions. Stem cell commitment determination involves a concerted effort of coordinated activation and silencing of lineage-specific genes. Transcription factors which bind gene promoters and chromatin-remodelling proteins are key players in the control process of lineage commitment and differentiation from embryogenesis through adulthood. Consequently, a major research challenge is to characterise such molecular pathways that coordinate lineage-specific differentiation and function. Revealing the mechanisms of action and the main factors will provide the knowledge necessary to control activation and regulation to achieve a specific lineage. Growing cells on a scaffold is a support system that mimics natural tissue and transduces the appropriate signals of the tissue niche for appropriate cellular function. The outcome of such research will deepen the understanding of cell differentiation to promote and advance the biotech, allowing the cell expansion required for their usage in therapy or the development of food tech.</p>","PeriodicalId":58820,"journal":{"name":"Biomaterials Translational","volume":"3 1","pages":"17-23"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4c/c6/bt-03-01-17.PMC9255789.pdf","citationCount":"4","resultStr":"{\"title\":\"Mesenchymal stem cell differentiation and usage for biotechnology applications: tissue engineering and food manufacturing.\",\"authors\":\"Dafna Benayahu\",\"doi\":\"10.12336/biomatertransl.2022.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in the field of stem cell research now enable their utilisation for biotechnology applications in regenerative medicine and food tech. The first use of stem cells as biomedical devices employed a combination of cells and scaffold to restore, improve, or replace damaged tissues and to grow new viable tissue for replacement organs. This approach has also been adopted to replace meat production in the food industry. Mesenchymal stem cells are the source material used to induce cells to differentiate into the desired lineage. These technologies require mass propagation and rely on supplying the regulatory factors that direct differentiation. Mesenchymal stem cells can differentiate into fibroblastic and skeletal cells; fibroblastic/chondrogenic/osteogenic/myogenic and adipogenic lineages. Each differentiation fate requires specific key molecular regulators and appropriate activation conditions. Stem cell commitment determination involves a concerted effort of coordinated activation and silencing of lineage-specific genes. Transcription factors which bind gene promoters and chromatin-remodelling proteins are key players in the control process of lineage commitment and differentiation from embryogenesis through adulthood. Consequently, a major research challenge is to characterise such molecular pathways that coordinate lineage-specific differentiation and function. Revealing the mechanisms of action and the main factors will provide the knowledge necessary to control activation and regulation to achieve a specific lineage. Growing cells on a scaffold is a support system that mimics natural tissue and transduces the appropriate signals of the tissue niche for appropriate cellular function. The outcome of such research will deepen the understanding of cell differentiation to promote and advance the biotech, allowing the cell expansion required for their usage in therapy or the development of food tech.</p>\",\"PeriodicalId\":58820,\"journal\":{\"name\":\"Biomaterials Translational\",\"volume\":\"3 1\",\"pages\":\"17-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4c/c6/bt-03-01-17.PMC9255789.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Translational\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12336/biomatertransl.2022.01.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Translational","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12336/biomatertransl.2022.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

干细胞研究领域的最新进展使其能够应用于再生医学和食品技术中的生物技术应用。干细胞首次被用作生物医学设备,利用细胞和支架的组合来修复、改善或替换受损组织,并为替代器官生长新的有活力的组织。这种方法也被用来取代食品工业中的肉类生产。间充质干细胞是用于诱导细胞分化为所需谱系的源材料。这些技术需要大规模传播,并依赖于提供直接分化的调节因子。间充质干细胞可分化为成纤维细胞和骨骼细胞;成纤维细胞/软骨细胞/成骨细胞/肌细胞和脂肪细胞谱系。每种分化命运都需要特定的关键分子调控因子和适当的激活条件。干细胞承诺的决定涉及到谱系特异性基因的协调激活和沉默的协同努力。结合基因启动子和染色质重塑蛋白的转录因子在从胚胎到成年的谱系承诺和分化控制过程中起着关键作用。因此,一个主要的研究挑战是表征这些协调谱系特异性分化和功能的分子途径。揭示作用机制和主要因素将为控制激活和调节以实现特定谱系提供必要的知识。在支架上生长的细胞是一种模拟自然组织的支持系统,它可以传导组织龛的适当信号,以实现适当的细胞功能。这些研究的结果将加深对细胞分化的理解,以促进和推进生物技术,允许细胞扩增用于治疗或食品技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mesenchymal stem cell differentiation and usage for biotechnology applications: tissue engineering and food manufacturing.

Recent advances in the field of stem cell research now enable their utilisation for biotechnology applications in regenerative medicine and food tech. The first use of stem cells as biomedical devices employed a combination of cells and scaffold to restore, improve, or replace damaged tissues and to grow new viable tissue for replacement organs. This approach has also been adopted to replace meat production in the food industry. Mesenchymal stem cells are the source material used to induce cells to differentiate into the desired lineage. These technologies require mass propagation and rely on supplying the regulatory factors that direct differentiation. Mesenchymal stem cells can differentiate into fibroblastic and skeletal cells; fibroblastic/chondrogenic/osteogenic/myogenic and adipogenic lineages. Each differentiation fate requires specific key molecular regulators and appropriate activation conditions. Stem cell commitment determination involves a concerted effort of coordinated activation and silencing of lineage-specific genes. Transcription factors which bind gene promoters and chromatin-remodelling proteins are key players in the control process of lineage commitment and differentiation from embryogenesis through adulthood. Consequently, a major research challenge is to characterise such molecular pathways that coordinate lineage-specific differentiation and function. Revealing the mechanisms of action and the main factors will provide the knowledge necessary to control activation and regulation to achieve a specific lineage. Growing cells on a scaffold is a support system that mimics natural tissue and transduces the appropriate signals of the tissue niche for appropriate cellular function. The outcome of such research will deepen the understanding of cell differentiation to promote and advance the biotech, allowing the cell expansion required for their usage in therapy or the development of food tech.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
9
期刊最新文献
"Yin-Yang philosophy" for the design of anticancer drug delivery nanoparticles. Abalone shell-derived Mg-doped mesoporous hydroxyapatite microsphere drug delivery system loaded with icariin for inducing apoptosis of osteosarcoma cells. Advanced nanoparticles in osteoarthritis treatment. Artificial intelligence-enabled studies on organoid and organoid extracellular vesicles. Corrigendum: Enhanced angiogenesis in porous poly(ε-caprolactone) scaffolds fortified with methacrylated hyaluronic acid hydrogel after subcutaneous transplantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1